Folds and cusps in Banach spaces with applications to nonlinear partial differential equations. II
HTML articles powered by AMS MathViewer
- by M. S. Berger, P. T. Church and J. G. Timourian
- Trans. Amer. Math. Soc. 307 (1988), 225-244
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936814-8
- PDF | Request permission
Abstract:
Earlier the authors have given abstract properties characterizing the fold and cusp maps on Banach spaces, and these results are applied here to the study of specific nonlinear elliptic boundary value problems. Functional analysis methods are used, specifically, weak solutions in Sobolev spaces. One problem studied is the inhomogeneous nonlinear Dirichlet problem \[ \Delta u + \lambda u - {u^3} = g\quad {\text {on}}\;\Omega ,\qquad u|\partial \Omega = 0,\] where $\Omega \subset {{\mathbf {R}}^n}(n \leqslant 4)$ is a bounded domain. Another is a nonlinear elliptic system, the von Kármán equations for the buckling of a thin planar elastic plate when compressive forces are applied to its edge.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Antonio Ambrosetti and Giovanni Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), no. 5, 635–645. MR 541874, DOI 10.1016/0362-546X(79)90092-0
- Stuart S. Antman, The influence of elasticity on analysis: modern developments, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 3, 267–291. MR 714990, DOI 10.1090/S0273-0979-1983-15185-6
- Melvin S. Berger, Nonlinearity and functional analysis, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. Lectures on nonlinear problems in mathematical analysis. MR 0488101
- Melvyn S. Berger, Nonlinear problems with exactly three solutions, Indiana Univ. Math. J. 28 (1979), no. 4, 689–698. MR 542952, DOI 10.1512/iumj.1979.28.28047
- Melvyn S. Berger, New applications of the calculus of variations in the large to nonlinear elasticity, Comm. Math. Phys. 35 (1974), 141–150. MR 394751
- Melvyn S. Berger, On vonKármán’s equations and the buckling of a thin elastic plate. I. The clamped plate, Comm. Pure Appl. Math. 20 (1967), 687–719. MR 221808, DOI 10.1002/cpa.3160200405
- M. S. Berger and P. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem. I, Indiana Univ. Math. J. 28 (1979), no. 6, 935–952. MR 551157, DOI 10.1512/iumj.1979.28.28066
- M. S. Berger, P. T. Church, and J. G. Timourian, An application of singularity theory to nonlinear elliptic partial differential equations, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, R.I., 1983, pp. 119–126. MR 713051
- M. S. Berger, P. T. Church, and J. G. Timourian, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. I, Indiana Univ. Math. J. 34 (1985), no. 1, 1–19. MR 773391, DOI 10.1512/iumj.1985.34.34001
- M. S. Berger, P. T. Church, and J. G. Timourian, Integrability of nonlinear differential equations via functional analysis, Nonlinear functional analysis and its applications, Part 1 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 117–123. MR 843553, DOI 10.1090/pspum/045.1/843553
- Melvyn S. Berger and Paul C. Fife, On von Karman’s equations and the buckling of a thin elastic plate, Bull. Amer. Math. Soc. 72 (1966), 1006–1011. MR 203219, DOI 10.1090/S0002-9904-1966-11620-8 —, On von Kármán’s equations and the buckling of a thin elastic plate. II: Plate with general boundary conditions, Comm. Pure Appl. Math. 12 (1968), 227-247.
- P. R. Garabedian, Partial differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0162045 V. Cafagna and P. T. Church, in preparation. V. Cafagna and F. Donato, Un résult global de multiplicité pour un problème différentiel nonlinéaire du premier ordre, C. R. Acad. Sci. Paris 300 (1985), 523-526. —, Singularity theory and the number of solutions to some nonlinear differential problems, preprint.
- Shui Nee Chow, Jack K. Hale, and John Mallet-Paret, Applications of generic bifurcations. I, Arch. Rational Mech. Anal. 59 (1975), no. 2, 159–188. MR 390852, DOI 10.1007/BF00249688 P. T. Church, E. N. Dancer, and J. G. Timourian, in preparation.
- P. T. Church and J. G. Timourian, The singular set of a nonlinear elliptic operator, Michigan Math. J. 35 (1988), no. 2, 197–213. MR 959267, DOI 10.1307/mmj/1029003747
- Philippe G. Ciarlet and Patrick Rabier, Les équations de von Kármán, Lecture Notes in Mathematics, vol. 826, Springer, Berlin, 1980 (French). MR 595326
- Klaus Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. MR 787404, DOI 10.1007/978-3-662-00547-7
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- V. L. Klee Jr., A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673–674. MR 78661, DOI 10.1090/S0002-9939-1956-0078661-2 F. Lazzeri and A. M. Micheletti, An application of singularity theory to nonlinear differentiable mappings between Banach spaces, preprint.
- William S. Massey, Algebraic topology: an introduction, Graduate Texts in Mathematics, Vol. 56, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1967 edition. MR 0448331
- H. P. McKean, Singularities of a simple elliptic operator, J. Differential Geom. 25 (1987), no. 2, 157–165. MR 880181
- H. P. McKean and J. C. Scovel, Geometry of some simple nonlinear differential operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 2, 299–346. MR 876127
- Richard S. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc. 92 (1959), 125–141. MR 116352, DOI 10.1090/S0002-9947-1959-0116352-7
- Bernhard Ruf, Multiplicity results for nonlinear elliptic equations, Nonlinear analysis, function spaces and applications, Vol. 3 (Litomyšl, 1986) Teubner-Texte Math., vol. 93, Teubner, Leipzig, 1986, pp. 109–138. MR 921246 —, Singularity theory and the geometry of a nonlinear elliptic equation, preprint.
- J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher. MR 0433481
- J. J. Stoker, Nonlinear elasticity, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0413654
- Andrzej Szulkin, On the number of solutions of some semilinear elliptic boundary value problems, Nonlinear Anal. 6 (1982), no. 1, 95–116. MR 647589, DOI 10.1016/0362-546X(82)90102-X
- Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-Verlag, New York, 1986. Fixed-point theorems; Translated from the German by Peter R. Wadsack. MR 816732, DOI 10.1007/978-1-4612-4838-5
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 225-244
- MSC: Primary 35J65; Secondary 47H15, 58C27
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936814-8
- MathSciNet review: 936814