Regularity of solutions of two-dimensional Monge-Ampère equations
HTML articles powered by AMS MathViewer
- by Friedmar Schulz and Liang Yuan Liao
- Trans. Amer. Math. Soc. 307 (1988), 271-277
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936816-1
- PDF | Request permission
Abstract:
In the paper we investigate the regularity of solutions $z(x, y) \in {C^{1,1}}(\Omega )$, resp. ${C^{1,1}}(\overline \Omega )$ of elliptic Monge-Ampére equations of the form \[ Ar + 2Bs + Ct + (rt - {s^2}) = E.\] It is shown that $z(x, y) \in {C^{2,\alpha }}(\Omega )$, resp. ${C^{2,\alpha }}(\overline \Omega )$, with corresponding a priori estimates, if $A, B, C, E \in {C^\alpha }(\Omega \times {{\mathbf {R}}^3})$. The results are deduced via the Campanato technique for equations of variational structure invoking a Legendre-like transformation.References
- A. D. Alexandrow, Die innere Geometrie der konvexen Flächen, Akademie-Verlag, Berlin, 1955 (German). MR 0071041
- I. Ya. Bakel′man, Generalized solutions of Monge-Ampère equations, Dokl. Akad. Nauk SSSR (N.S.) 114 (1957), 1143–1145 (Russian). MR 0095481
- Sergio Campanato, Equazioni ellittiche del $\textrm {II}\deg$ ordine espazi ${\mathfrak {L}}^{(2,\lambda )}$, Ann. Mat. Pura Appl. (4) 69 (1965), 321–381 (Italian). MR 192168, DOI 10.1007/BF02414377 —, Sistemi ellittici in forma divergenza. Regolarità all’interno, Quaderni, Scuola Normale Superiore Pisa, Pisa, 1980.
- Mariano Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. MR 717034
- Erhard Heinz, Interior estimates for solutions of elliptic Monge-Ampère equations, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 149–155. MR 0157100
- Hans Lewy, A priori limitations for solutions of Monge-Ampère equations, Trans. Amer. Math. Soc. 37 (1935), no. 3, 417–434. MR 1501794, DOI 10.1090/S0002-9947-1935-1501794-9
- Louis Nirenberg, On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103–156; addendum, 395. MR 64986, DOI 10.1002/cpa.3160060105
- A. V. Pogorelov, Monge-Ampère equations of elliptic type, P. Noordhoff Ltd., Groningen, 1964. Translated from the first Russian edition by Leo F. Boron with the assistance of Albert L. Rabenstein and Richard C. Bollinger. MR 0180763 I. Kh. Sabitov, The regularity of convex regions with a metric that is regular in the Hölder classes, Siberian Math. J. 17 (1976), 681-687. M. V. Safonov, On the classical solution of Bellman’s elliptic equation, Soviet Math. Dokl. 30 (1984), 482-485. F. Schulz, Über elliptische Monge-Ampéresche Differentialgleichungen mit einer Bemerkung zum Weylschen Einbettungsproblem, Nachr. Akad. Wiss. Göttingen II: Math. Phys. Kl. 1981, 93-108.
- Friedmar Schulz, Über die Differentialgleichung $rt-s^{2}=f$ und das Weylsche Einbettungsproblem, Math. Z. 179 (1982), no. 1, 1–10 (German). MR 643043, DOI 10.1007/BF01173911
- Friedmar Schulz, A priori estimates for solutions of Monge-Ampère equations, Arch. Rational Mech. Anal. 89 (1985), no. 2, 123–133. MR 786542, DOI 10.1007/BF00282328
- Friedmar Schulz, Boundary estimates for solutions of Monge-Ampère equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 3, 431–440. MR 785620
- Friedmar Schulz, Über nichtlineare, konkave elliptische Differentialgleichungen, Math. Z. 191 (1986), no. 3, 429–448 (German). MR 824444, DOI 10.1007/BF01162718
- Neil S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 3, 421–430. MR 769173
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 271-277
- MSC: Primary 35J60; Secondary 35B65
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936816-1
- MathSciNet review: 936816