Pseudodifferential operators with coefficients in Sobolev spaces
HTML articles powered by AMS MathViewer
- by Jürgen Marschall
- Trans. Amer. Math. Soc. 307 (1988), 335-361
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936820-3
- PDF | Request permission
Abstract:
Pseudo-differential operators with coefficients in Sobolev spaces ${H^{r,q}},1 \leqslant q \leqslant \infty$, and their adjoints are studied on Hardy-Sobolev spaces ${H^{s,p}},\;0 < p \leqslant \infty$. A symbolic calculus for these operators is developed, and the microlocal properties are studied. Finally, the invariance under coordinate transformations is proved.References
- Michael Beals, Propagation of smoothness for nonlinear second-order strictly hyperbolic differential equations, Pseudodifferential operators and applications (Notre Dame, Ind., 1984) Proc. Sympos. Pure Math., vol. 43, Amer. Math. Soc., Providence, RI, 1985, pp. 21–44. MR 812282, DOI 10.1090/pspum/043/812282
- Michael Beals and Michael Reed, Microlocal regularity theorems for nonsmooth pseudodifferential operators and applications to nonlinear problems, Trans. Amer. Math. Soc. 285 (1984), no. 1, 159–184. MR 748836, DOI 10.1090/S0002-9947-1984-0748836-7
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751, DOI 10.24033/asens.1404
- Gérard Bourdaud, $L^{p}$ estimates for certain nonregular pseudodifferential operators, Comm. Partial Differential Equations 7 (1982), no. 9, 1023–1033. MR 673825, DOI 10.1080/03605308208820244
- Ronald R. Coifman and Yves Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, vol. 57, Société Mathématique de France, Paris, 1978 (French). With an English summary. MR 518170
- Jens Franke, On the spaces $\textbf {F}_{pq}^s$ of Triebel-Lizorkin type: pointwise multipliers and spaces on domains, Math. Nachr. 125 (1986), 29–68. MR 847350, DOI 10.1002/mana.19861250104
- David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. MR 523600 L. Hörmander, Pseudodifferential operators and hypoelliptic equations, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1966, pp. 138-183.
- Björn Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), no. 1, 94–104. MR 454618, DOI 10.7146/math.scand.a-11678
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Hitoshi Kumano-go and Michihiro Nagase, Pseudo-differential operators with non-regular symbols and applications, Funkcial. Ekvac. 21 (1978), no. 2, 151–192. MR 518297 J. Marschall, Pseudo-differential operators with nonregular symbols, Thesis, Freie Universität Berlin, 1985.
- Jürgen Marschall, Some remarks on Triebel spaces, Studia Math. 87 (1987), no. 1, 79–92. MR 924763, DOI 10.4064/sm-87-1-79-92 —, Pseudo-differential operators with nonregular symbols of the class $S_{\rho ,\delta }^m$, Comm. Partial Differential Equations 12 (1987), 921-965.
- Yves Meyer, Remarques sur un théorème de J.-M. Bony, Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, pp. 1–20 (French). MR 639462
- Jaak Peetre, New thoughts on Besov spaces, Duke University Mathematics Series, No. 1, Duke University, Mathematics Department, Durham, N.C., 1976. MR 0461123
- Jeffrey Rauch, Singularities of solutions to semilinear wave equations, J. Math. Pures Appl. (9) 58 (1979), no. 3, 299–308. MR 544255
- T. Runst, Paradifferential operators in spaces of Triebel-Lizorkin and Besov type, Z. Anal. Anwendungen 4 (1985), no. 6, 557–573 (English, with German and Russian summaries). MR 818984, DOI 10.4171/ZAA/175
- Robert S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031–1060. MR 0215084 F. Treves, Introduction to pseudo-differential and Fourier integral operators, vol. 1, Plenum, New York, 1980.
- Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540, DOI 10.1007/978-3-0346-0416-1 M. Yamazaki, A quasi-homogeneous version of paradifferential operators, I. Boundedness on spaces of Besov type, J. Fac. Sci. Univ. Tokyo Sect. IA 33 (1986), 131-174. II. A symbol calculus, ibid. 311-345. —, A quasi-homogeneous version of the microlocal analysis for nonlinear partial differential equations, Preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 335-361
- MSC: Primary 35S05; Secondary 35A27, 47G05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936820-3
- MathSciNet review: 936820