Harmonically immersed surfaces of $\textbf {R}^ n$
HTML articles powered by AMS MathViewer
- by Gary R. Jensen and Marco Rigoli
- Trans. Amer. Math. Soc. 307 (1988), 363-372
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936822-7
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 311 (1989), 425-428.
Abstract:
Some generalizations of classical results in the theory of minimal surfaces $f:M \to {{\mathbf {R}}^n}$ are shown to hold in the more general case of harmonically immersed surfaces.References
- Shiing-shen Chern, Minimal surfaces in an Euclidean space of $N$ dimensions, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 187–198. MR 0180926
- Shiing Shen Chern, On the minimal immersions of the two-sphere in a space of constant curvature, Problems in analysis (Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 27–40. MR 0362151
- James Eells, Gauss maps of surfaces, Perspectives in mathematics, Birkhäuser, Basel, 1984, pp. 111–129. MR 779673
- James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 703510, DOI 10.1090/cbms/050
- R. D. Gulliver II, R. Osserman, and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750–812. MR 362153, DOI 10.2307/2373697
- Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13–72. MR 94452, DOI 10.1007/BF02564570
- David A. Hoffman and Robert Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105. MR 587748, DOI 10.1090/memo/0236
- David Hoffman and Robert Osserman, The area of the generalized Gaussian image and the stability of minimal surfaces in $S^{n}$ and $\textbf {R}^{n}$, Math. Ann. 260 (1982), no. 4, 437–452. MR 670192, DOI 10.1007/BF01457023
- Tilla Klotz Milnor, Are harmonically immersed surfaces at all like minimally immersed surfaces?, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 99–110. MR 795230
- H. Blaine Lawson Jr., Lectures on minimal submanifolds. Vol. I, Monografías de Matemática [Mathematical Monographs], vol. 14, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977. MR 527121
- Robert Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0256278
- Marco Rigoli, On immersed compact submanifolds of Euclidean space, Proc. Amer. Math. Soc. 102 (1988), no. 1, 153–156. MR 915735, DOI 10.1090/S0002-9939-1988-0915735-6
- Ernst A. Ruh and Jaak Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569–573. MR 259768, DOI 10.1090/S0002-9947-1970-0259768-5
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 363-372
- MSC: Primary 53A10; Secondary 53A07, 58E20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936822-7
- MathSciNet review: 936822