Homogeneous continua in Euclidean $(n+1)$-space which contain an $n$-cube are locally connected
HTML articles powered by AMS MathViewer
- by Janusz R. Prajs
- Trans. Amer. Math. Soc. 307 (1988), 383-394
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936823-9
- PDF | Request permission
Abstract:
We prove that each homogeneous continuum which topologically contains an $n$-dimensional unit cube and lies in $(n + 1)$-dimensional Euclidean space is locally connected.References
- R. H. Bing, A simple closed curve is the only homogeneous bounded plane continuum that contains an arc, Canadian J. Math. 12 (1960), 209–230. MR 111001, DOI 10.4153/CJM-1960-018-x
- Marvin J. Greenberg and John R. Harper, Algebraic topology, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1981. A first course. MR 643101
- Charles L. Hagopian, Homogeneous plane continua, Houston J. Math. 1 (1975), 35–41. MR 383369 K. Kuratowski, Topology. II, PWN, Warszawa, 1968.
- A. Lelek, On the Moore triodic theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 271–276. MR 148023
- T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua. II, Dissertationes Math. (Rozprawy Mat.) 225 (1984), 57. MR 739739 S. Mazurkiewicz, Sur les continus homogenes, Fund. Math. 5 (1924), 137-146.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 383-394
- MSC: Primary 54F25; Secondary 54C25, 57N35
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936823-9
- MathSciNet review: 936823