Coordinatization in superstable theories. II
HTML articles powered by AMS MathViewer
- by Steven Buechler
- Trans. Amer. Math. Soc. 307 (1988), 411-417
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936825-2
- PDF | Request permission
Abstract:
In this paper we prove Theorem A. Suppose that $T$ is superstable and $U(a/A) = \alpha + 1$, for some $\alpha$. Then in ${T^{{\text {eq}}}}$ there is a $c \in \operatorname {acl} (Aa)\backslash \operatorname {acl} (A)$ such that one of the following holds. (i) $U(c/A) = 1$. (ii) $\operatorname {stp} (c/A)$ has finite Morley rank. In fact, this strong type is semiminimal with respect to a strongly minimal set.References
- Steven Buechler, Coordinatization in superstable theories. I. Stationary types, Trans. Amer. Math. Soc. 288 (1985), no. 1, 101–114. MR 773049, DOI 10.1090/S0002-9947-1985-0773049-3
- Steven Buechler, Locally modular theories of finite rank, Ann. Pure Appl. Logic 30 (1986), no. 1, 83–94. Stability in model theory (Trento, 1984). MR 831438, DOI 10.1016/0168-0072(86)90038-2
- Steven Buechler, The geometry of weakly minimal types, J. Symbolic Logic 50 (1985), no. 4, 1044–1053 (1986). MR 820131, DOI 10.2307/2273989
- Steven Buechler, “Geometrical” stability theory, Logic colloquium ’85 (Orsay, 1985) Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam, 1987, pp. 53–66. MR 895638, DOI 10.1016/S0049-237X(09)70547-6 —, Non-trivial types of $U$-rank $1$, J. Symbolic Logic 52 (1987), 548-551.
- Steven Buechler, Invariants for $\omega$-categorical, $\omega$-stable theories, Israel J. Math. 52 (1985), no. 1-2, 65–81. MR 815603, DOI 10.1007/BF02776081
- G. Cherlin, L. Harrington, and A. H. Lachlan, $\aleph _0$-categorical, $\aleph _0$-stable structures, Ann. Pure Appl. Logic 28 (1985), no. 2, 103–135. MR 779159, DOI 10.1016/0168-0072(85)90023-5
- Daniel Lascar, Ranks and definability in superstable theories, Israel J. Math. 23 (1976), no. 1, 53–87. MR 409169, DOI 10.1007/BF02757234
- Daniel Lascar, Relation entre le rang $U$ et le poids, Fund. Math. 121 (1984), no. 2, 117–123 (French, with English summary). MR 765327, DOI 10.4064/fm-121-2-117-123
- Daniel Lascar and Bruno Poizat, An introduction to forking, J. Symbolic Logic 44 (1979), no. 3, 330–350. MR 540665, DOI 10.2307/2273127
- M. Makkai, A survey of basic stability theory, with particular emphasis on orthogonality and regular types, Israel J. Math. 49 (1984), no. 1-3, 181–238. MR 788268, DOI 10.1007/BF02760649
- Saharon Shelah, Classification theory and the number of nonisomorphic models, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 513226 G. Ahlbrandt, Doctoral dissertation, Univ. of Illinois at Chicago, 1984 (submitted). E. Hrushovski, Contributions to stable model theory, Doctoral Dissertation, Univ. of California-Berkeley, 1986 (submitted).
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 411-417
- MSC: Primary 03C45
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936825-2
- MathSciNet review: 936825