Area-minimizing integral currents with boundaries invariant under polar actions
HTML articles powered by AMS MathViewer
- by Julian C. Lander
- Trans. Amer. Math. Soc. 307 (1988), 419-429
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936826-4
- PDF | Request permission
Abstract:
Let $G$ be a compact, connected subgroup of $SO(n)$ acting on ${{\mathbf {R}}^n}$, and let the action of $G$ be polar. (Polar actions include the adjoint action of a Lie group $H$ on the tangent space to the symmetric space $G/H$ at the identity coset.) Let $B$ be an $(m - 1)$-dimensional submanifold without boundary, invariant under the action of $G$, and lying in the union of the principal orbits of $G$. It is shown that, if $S$ is an area-minimizing integral current with boundary $B$, then $S$ is invariant under the action of $G$. This result is extended to a larger class of boundaries, and to a class of parametric integrands including the area integrand.References
- David Bindschadler, Invariant solutions to the oriented Plateau problem of maximal codimension, Trans. Amer. Math. Soc. 261 (1980), no. 2, 439–462. MR 580897, DOI 10.1090/S0002-9947-1980-0580897-7
- John E. Brothers, Invariance of solutions to invariant parametric variational problems, Trans. Amer. Math. Soc. 262 (1980), no. 1, 159–179. MR 583850, DOI 10.1090/S0002-9947-1980-0583850-2
- Jiri Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137. MR 773051, DOI 10.1090/S0002-9947-1985-0773051-1 —, Personal communication.
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561 J. C. Lander, Area-minimizing integral currents with boundaries invariant under polar actions, Ph.D. Thesis, Massachusetts Institute of Technology, 1984.
- H. Blaine Lawson Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc. 173 (1972), 231–249. MR 308905, DOI 10.1090/S0002-9947-1972-0308905-4
- Frank Morgan, On finiteness of the number of stable minimal hypersurfaces with a fixed boundary, Indiana Univ. Math. J. 35 (1986), no. 4, 779–833. MR 865429, DOI 10.1512/iumj.1986.35.35042
- Richard S. Palais and Chuu-Lian Terng, A general theory of canonical forms, Trans. Amer. Math. Soc. 300 (1987), no. 2, 771–789. MR 876478, DOI 10.1090/S0002-9947-1987-0876478-4
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 419-429
- MSC: Primary 49F20; Secondary 53A10, 58E15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0936826-4
- MathSciNet review: 936826