Infinitely many periodic solutions for the equation: $u_ {tt}-u_ {xx}\pm \vert u\vert ^ {p-1}u=f(x,t)$. II
HTML articles powered by AMS MathViewer
- by Kazunaga Tanaka
- Trans. Amer. Math. Soc. 307 (1988), 615-645
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940220-X
- PDF | Request permission
Abstract:
Existence of forced vibrations of nonlinear wave equation: \[ \begin {array}{*{20}{c}} {{u_{tt}} - {u_{xx}} \pm |u{|^{p - 1}}u = f(x, t),} \hfill & {(x, t) \in (0, \pi ) \times {\mathbf {R}},} \hfill \\ {u(0, t) = u(\pi , t) = 0,} \hfill & {t \in {\mathbf {R}},} \hfill \\ {u(x, t + 2\pi ) = u(x, t),} \hfill & {(x, t) \in (0, \pi ) \times {\mathbf {R}},} \hfill \\ \end {array} \] is considered. For all $p \in (1, \infty )$ and $f(x, t) \in {L^{(p + 1)/p}}$, existence of infinitely many periodic solutions is proved. This improves the results of the author [29, 30]. We use variational methods to show the existence result. Minimax arguments and energy estimates for the corresponding functional play an essential role in the proof.References
- Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
- Abbas Bahri, Topological results on a certain class of functionals and application, J. Functional Analysis 41 (1981), no. 3, 397–427. MR 619960, DOI 10.1016/0022-1236(81)90083-5
- Abbas Bahri and Henri Berestycki, A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), no. 1, 1–32. MR 621969, DOI 10.1090/S0002-9947-1981-0621969-9
- A. Bahri and H. Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math. 152 (1984), no. 3-4, 143–197. MR 741053, DOI 10.1007/BF02392196
- Abbas Bahri and Henri Berestycki, Existence of forced oscillations for some nonlinear differential equations, Comm. Pure Appl. Math. 37 (1984), no. 4, 403–442. MR 745324, DOI 10.1002/cpa.3160370402
- Abbas Bahri and Pierre-Louis Lions, Remarques sur la théorie variationnelle des points critiques et applications, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 5, 145–147 (French, with English summary). MR 801948
- Vieri Benci and Donato Fortunato, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl. (4) 132 (1982), 215–242 (1983) (English, with Italian summary). MR 696044, DOI 10.1007/BF01760982
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 0482275, DOI 10.1007/978-3-642-66451-9 M. S. Birman and M. Z. Solomjak, Spectral asymptotics of nonsmooth elliptic operators. I, Trans. Moscow Math. Soc. 27 (1972), 1-52.
- Haïm Brézis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 3, 409–426. MR 693957, DOI 10.1090/S0273-0979-1983-15105-4
- Haïm Brézis, Jean-Michel Coron, and Louis Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), no. 5, 667–684. MR 586417, DOI 10.1002/cpa.3160330507
- H. Brézis and L. Nirenberg, Forced vibrations for a nonlinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 1–30. MR 470377, DOI 10.1002/cpa.3160310102
- J.-M. Coron, Periodic solutions of a nonlinear wave equation without assumption of monotonicity, Math. Ann. 262 (1983), no. 2, 273–285. MR 690201, DOI 10.1007/BF01455317
- E. R. Fadell, S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary $S^{1}$ actions and applications, Trans. Amer. Math. Soc. 274 (1982), no. 1, 345–360. MR 670937, DOI 10.1090/S0002-9947-1982-0670937-0
- Hana Lovicarová, Periodic solutions of a weakly nonlinear wave equation in one dimension, Czechoslovak Math. J. 19(94) (1969), 324–342. MR 247249, DOI 10.21136/CMJ.1969.100899
- A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 1–32 (Italian, with English summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0418150
- Jean-Pascal Ollivry, Vibrations forcées pour une équation d’onde non linéaire, C. R. Acad. Sci. Paris Sér. I Math. 297 (1983), no. 1, 29–32 (French, with English summary). MR 719940
- Raffaele Pisani and Maria Tucci, Existence of infinitely many periodic solutions for a perturbed Hamiltonian system, Nonlinear Anal. 8 (1984), no. 8, 873–891. MR 753765, DOI 10.1016/0362-546X(84)90109-3
- P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR 0464299
- Paul H. Rabinowitz, Free vibrations for a semilinear wave equation, Comm. Pure Appl. Math. 31 (1978), no. 1, 31–68. MR 470378, DOI 10.1002/cpa.3160310103
- Paul H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc. 272 (1982), no. 2, 753–769. MR 662065, DOI 10.1090/S0002-9947-1982-0662065-5
- Paul H. Rabinowitz, Periodic solutions of large norm of Hamiltonian systems, J. Differential Equations 50 (1983), no. 1, 33–48. MR 717867, DOI 10.1016/0022-0396(83)90083-9
- Paul H. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math. 37 (1984), no. 2, 189–206. MR 733716, DOI 10.1002/cpa.3160370203
- D. H. Sattinger, Branching in the presence of symmetry, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764932, DOI 10.1137/1.9781611970296
- J. T. Schwartz, Nonlinear functional analysis, Notes on Mathematics and its Applications, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Notes by H. Fattorini, R. Nirenberg and H. Porta, with an additional chapter by Hermann Karcher. MR 0433481
- Barry Simon, Analysis with weak trace ideals and the number of bound states of Schrödinger operators, Trans. Amer. Math. Soc. 224 (1976), no. 2, 367–380. MR 423128, DOI 10.1090/S0002-9947-1976-0423128-X
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149, DOI 10.1007/BFb0064579
- Michael Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manuscripta Math. 32 (1980), no. 3-4, 335–364. MR 595426, DOI 10.1007/BF01299609
- Kazunaga Tanaka, Infinitely many periodic solutions for the equation: $u_{tt}-u_{xx}\pm |u|^{s-1}u=f(x,t)$, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 3, 70–73. MR 796470
- Kazunaga Tanaka, Infinitely many periodic solutions for a superlinear forced wave equation, Nonlinear Anal. 11 (1987), no. 1, 85–104. MR 872042, DOI 10.1016/0362-546X(87)90028-9
- Peter Li and Shing Tung Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983), no. 3, 309–318. MR 701919, DOI 10.1007/BF01213210 Y. Long, Multiple solutions of perturbed superquadratic second order Hamiltonian systems, MRC Tech. Summary Report, Univ. of Wisconsin, #2963, 1987.
- L. Nirenberg, Comments on nonlinear problems, Matematiche (Catania) 36 (1981), no. 1, 109–119 (1983). With an appendix by Chang Shou Lin. MR 736798
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 615-645
- MSC: Primary 35B10; Secondary 35L70, 58E05, 58G16
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940220-X
- MathSciNet review: 940220