Cauchy problem of hyperbolic conservation laws in multidimensional space with intersecting jump initial data
HTML articles powered by AMS MathViewer
- by De Ning Li
- Trans. Amer. Math. Soc. 307 (1988), 799-812
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940228-4
- PDF | Request permission
Abstract:
Cauchy problem of hyperbolic conservation laws in multidimensional space is considered, where the initial data have several jump discontinuity surfaces which develop into shock fronts intersecting at a common submanifold. Local existence is proved, assuming compatible conditions and uniform stability. For isentropic flow in $2$-dimensional space, the interaction of two shock fronts and the nonexistence of three intersecting shock fronts are discussed.References
- A. T. Bui and D. Li, Double shock fronts for hyperbolic conservation laws in several space variables, preprint.
- Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304 D. Li, The shock wave solutions of quasilinear hyperbolic-parabolic coupled systems and the linear stability of isothermal radiative shock waves in multi-dimensional space, Sci. Sinica (Ser. A) 30 (1987), 1-16.
- Andrew Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), no. 275, iv+95. MR 683422, DOI 10.1090/memo/0275 —, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. No. 281, 1983.
- G. Métivier, Interaction de chocs, Bony-Sjöstrand-Meyer seminar, 1984–1985, École Polytech., Palaiseau, 1985, pp. Exp. No. 6, 18 (French). MR 819772
- Guy Métivier, Interaction de deux chocs pour un système de deux lois de conservation, en dimension deux d’espace, Trans. Amer. Math. Soc. 296 (1986), no. 2, 431–479 (French, with English summary). MR 846593, DOI 10.1090/S0002-9947-1986-0846593-9
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 799-812
- MSC: Primary 35L65; Secondary 76L05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940228-4
- MathSciNet review: 940228