Deformations of finite-dimensional algebras and their idempotents
HTML articles powered by AMS MathViewer
- by M. Schaps
- Trans. Amer. Math. Soc. 307 (1988), 843-856
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940231-4
- PDF | Request permission
Abstract:
Let $B$ be a finite dimensional algebra over an algebraically closed field $K$. If we represent primitive idempotents by points and basis vectors in ${e_i}B{e_j}$ by "arrows" from ${e_j}$ to ${e_i}$, then any specialization of the algebra acts on this directed graph by coalescing points. This implies that the number of irreducible components in the scheme parametrizing $n$-dimensional algebras is no less than the number of loopless directed graphs with a total of $n$ vertices and arrows. We also show that the condition of having a distributive ideal lattice is open.References
- Michael Artin, Théorèmes de représentabilité pour les espaces algébriques, Séminaire de Mathématiques Supérieures, No. 44 (Été, vol. 1970, Les Presses de l’Université de Montréal, Montreal, Que., 1973. En collaboration avec Alexandru Lascu et Jean-François Boutot. MR 0407011
- Th. Dana-Picard and M. Schaps, Classifying generic algebras, Rocky Mountain J. Math. 22 (1992), no. 1, 125–156. MR 1159947, DOI 10.1216/rmjm/1181072799
- Francis J. Flanigan, Straightening-out and semirigidity in associative algebras, Trans. Amer. Math. Soc. 138 (1969), 415–425. MR 237574, DOI 10.1090/S0002-9947-1969-0237574-7
- Francis J. Flanigan, Which algebras deform into a total matrix algebra?, J. Algebra 29 (1974), 103–112. MR 342569, DOI 10.1016/0021-8693(74)90115-X
- Peter Gabriel, Finite representation type is open, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 10, 23. MR 0376769
- Murray Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59–103. MR 171807, DOI 10.2307/1970484
- Dieter Happel, Deformations of five-dimensional algebras with unit, Ring theory (Proc. Antwerp Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978) Lecture Notes in Pure and Appl. Math., vol. 51, Dekker, New York, 1979, pp. 459–494. MR 563308
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Guerino Mazzola, The algebraic and geometric classification of associative algebras of dimension five, Manuscripta Math. 27 (1979), no. 1, 81–101. MR 524979, DOI 10.1007/BF01297739 Ch. Reidtmann, Algebres de type de representation fini d’apres Bongartz, Gabriel, Roiter et d’autres, Seminaire Bourbaki, 37e annee, no. 650, 1985.
- M. Schaps, Moduli of commutative and noncommutative finite covers, Israel J. Math. 58 (1987), no. 1, 67–102. MR 889974, DOI 10.1007/BF02764672
- A. H. Schofield, Bounding the global dimension in terms of the dimension, Bull. London Math. Soc. 17 (1985), no. 4, 393–394. MR 806637, DOI 10.1112/blms/17.4.393
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 307 (1988), 843-856
- MSC: Primary 16A46; Secondary 16A58
- DOI: https://doi.org/10.1090/S0002-9947-1988-0940231-4
- MathSciNet review: 940231