Subordination families and extreme points
HTML articles powered by AMS MathViewer
- by Yusuf Abu-Muhanna and D. J. Hallenbeck
- Trans. Amer. Math. Soc. 308 (1988), 83-89
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946431-1
- PDF | Request permission
Abstract:
Let $s(F)$ denote the set of functions subordinate to a univalent function $F$ in $\Delta$ the unit disk. Let ${B_0}$ denote the set of functions $\phi (z)$ analytic in $\Delta$ satisfying $|\phi (z)| < 1$ and $\phi (0) = 0$. We prove that if $f = F \circ \phi$ is an extreme point of $s(F)$, then $\phi$ is an extreme point of ${B_0}$. Let $D = F(s)$ and $\lambda (w, \partial D)$ denote the distance between $w$ and $\partial D$ (boundary of $D$). We also prove that if $\phi$ is an extreme point of ${B_0}$ and $|\phi ({e^{it}})| < 1$ for almost all $t$, then $\int _0^{2\pi } {\log \lambda (F(\phi ({e^{it}}){e^{i\theta }}), \partial D) dt = - \infty }$ for almost all $\theta$.References
- Yusuf Abu-Muhanna, On extreme points of subordination families, Proc. Amer. Math. Soc. 87 (1983), no. 3, 439–443. MR 684634, DOI 10.1090/S0002-9939-1983-0684634-5
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- David J. Hallenbeck, Extreme points of subordination families with univalent majorants, Proc. Amer. Math. Soc. 91 (1984), no. 1, 54–58. MR 735563, DOI 10.1090/S0002-9939-1984-0735563-0
- D. J. Hallenbeck and T. H. MacGregor, Linear problems and convexity techniques in geometric function theory, Monographs and Studies in Mathematics, vol. 22, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 768747
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 83-89
- MSC: Primary 30C80
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946431-1
- MathSciNet review: 946431