Generalized Chebyshev polynomials associated with affine Weyl groups
HTML articles powered by AMS MathViewer
- by Michael E. Hoffman and William Douglas Withers
- Trans. Amer. Math. Soc. 308 (1988), 91-104
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946432-3
- PDF | Request permission
Abstract:
We begin with a compact figure that can be folded into smaller replicas of itself, such as the interval or equilateral triangle. Such figures are in one-to-one correspondence with affine Weyl groups. For each such figure in $n$-dimensional Euclidean space, we construct a sequence of polynomials ${P_k}:{{\mathbf {R}}^n} \to {{\mathbf {R}}^n}$ so that the mapping ${P_k}$ is conjugate to stretching the figure by a factor $k$ and folding it back onto itself. If $n = 1$ and the figure is the interval, this construction yields the Chebyshev polynomials (up to conjugation). The polynomials ${P_k}$ are orthogonal with respect to a suitable measure and can be extended in a natural way to a complete set of orthogonal polynomials.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973. MR 0370327 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- Charles F. Dunkl, Orthogonal polynomials on the sphere with octahedral symmetry, Trans. Amer. Math. Soc. 282 (1984), no. 2, 555–575. MR 732106, DOI 10.1090/S0002-9947-1984-0732106-7
- Richard Eier and Rudolf Lidl, A class of orthogonal polynomials in $k$ variables, Math. Ann. 260 (1982), no. 1, 93–99. MR 664368, DOI 10.1007/BF01475757
- Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- Tom Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 435–495. MR 0402146
- Tom H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 48–58. MR 0340673
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Laurence Mittag and Michael J. Stephen, Yang-Lee zeros of the Potts model, J. Statist. Phys. 35 (1984), no. 3-4, 303–320. MR 748078, DOI 10.1007/BF01014386
- Theodore J. Rivlin, The Chebyshev polynomials, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0450850
- Hans Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0254112
- Laurent Schwartz, Mathematics for the physical sciences, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0207494
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 91-104
- MSC: Primary 33A65; Secondary 42C05, 58F13
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946432-3
- MathSciNet review: 946432