Iwasawa’s $\lambda ^ -$-invariant and a supplementary factor in an algebraic class number formula
HTML articles powered by AMS MathViewer
- by Kuniaki Horie
- Trans. Amer. Math. Soc. 308 (1988), 313-328
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946445-1
- PDF | Request permission
Abstract:
Let $l$ be a prime number and $k$ an imaginary abelian field. Sinnott [12] has shown that the relative class number of $k$ is expressed by the so-called index of the Stickelberger ideal of $k$, with a "supplementary factor" ${c^ - }$ in $\mathbb {N}/2 = \{ n/2|n \in \mathbb {N}\}$, and that if $k$ varies through the layers of the basic ${\mathbb {Z}_l}$-extension over an imaginary abelian field, then ${c^ - }$ becomes eventually constant. On the other hand, ${c^ - }$ can take any value in $\mathbb {N}/2$ as $k$ ranges over the imaginary abelian fields (cf. [10]). In this paper, we shall study relations between the supplementary factor ${c^ - }$ and Iwasawa’s ${\lambda ^ - }$-invariant for the basic ${\mathbb {Z}_l}$-extension over $k$, our discussion being based upon some formulas of Kida [8, 9], those of Sinnott [12], and fundamental results concerning a finite abelian $l$-group acted on by a cyclic group. As a consequence, we shall see that the ${\lambda ^ - }$-invariant goes to infinity whenever $k$ ranges over a sequence of imaginary abelian fields such that the $l$-part of ${c^ - }$ goes to infinity.References
- Bruce Ferrero, Iwasawa invariants of Abelian number fields, Math. Ann. 234 (1978), no. 1, 9–24. MR 485777, DOI 10.1007/BF01409336
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952 (German). MR 0049239
- Kuniaki Horie, On the index of the Stickelberger ideal and the cyclotomic regulator, J. Number Theory 20 (1985), no. 2, 238–253. MR 790784, DOI 10.1016/0022-314X(85)90042-3
- Kuniaki Horie, A note on basic Iwasawa $\lambda$-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), no. 1, 31–38. MR 877004, DOI 10.1007/BF01405089
- Kenkichi Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. (2) 76 (1962), 171–179. MR 154862, DOI 10.2307/1970270
- Kenkichi Iwasawa, On $\textbf {Z}_{l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 349627, DOI 10.2307/1970784
- Yûji Kida, $l$-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), no. 4, 519–528. MR 599821, DOI 10.1016/0022-314X(80)90042-6 —, Cyclotomic ${{\mathbf {Z}}_2}$-extensions of $J$-fields, J. Number Theory 14 (1982), 353-361.
- Tatsuo Kimura and Kuniaki Horie, On the Stickelberger ideal and the relative class number, Trans. Amer. Math. Soc. 302 (1987), no. 2, 727–739. MR 891643, DOI 10.1090/S0002-9947-1987-0891643-8
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), no. 1, 107–134. MR 485778, DOI 10.2307/1970932
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234. MR 595586, DOI 10.1007/BF01389158
- Bartel Leendert van der Waerden, Moderne Algebra, J. Springer, Berlin, 1940 (German). MR 0002841
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 313-328
- MSC: Primary 11R23; Secondary 11R20, 11R29
- DOI: https://doi.org/10.1090/S0002-9947-1988-0946445-1
- MathSciNet review: 946445