Deficient values and angular distribution of entire functions
Author:
Lo Yang
Journal:
Trans. Amer. Math. Soc. 308 (1988), 583-601
MSC:
Primary 30D35; Secondary 30D30
DOI:
https://doi.org/10.1090/S0002-9947-1988-0930073-8
MathSciNet review:
930073
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $f(z)$ be an entire function of positive and finite order $\mu$. If $f(z)$ has a finite number of Borel directions of order $\geqslant \mu$, then the sum of numbers of finite nonzero deficient values of $f(z)$ and all its primitives does not exceed $2\mu$. The proof is based on several lemmas and application of harmonic measure.
- N. U. Arakeljan, Entire functions of finite order with an infinite set of deficient values, Dokl. Akad. Nauk SSSR 170 (1966), 999–1002 (Russian). MR 0206286
- David Drasin, Proof of a conjecture of F. Nevanlinna concerning functions which have deficiency sum two, Acta Math. 158 (1987), no. 1-2, 1–94. MR 880069, DOI https://doi.org/10.1007/BF02392256
- David Drasin, Quasiconformal modifications of functions having deficiency sum two, Ann. of Math. (2) 114 (1981), no. 3, 493–518. MR 634427, DOI https://doi.org/10.2307/1971300
- Albert Edrei and Wolfgang H. J. Fuchs, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes, Comment. Math. Helv. 33 (1959), 258–295 (French). MR 123716, DOI https://doi.org/10.1007/BF02565920
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280
- A. Pfluger, Zur Defektrelation ganzer Funktionen endlicher Ordnung, Comment. Math. Helv. 19 (1946), 91–104 (German). MR 17806, DOI https://doi.org/10.1007/BF02565950
- M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959. MR 0114894 G. Valiron, Directions de Borel des fonctions méromorphes, Mém. Sci. Math., fasc. 89, Paris, 1938.
- Allen Weitsman, Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna, Acta Math. 123 (1969), 115–139. MR 255820, DOI https://doi.org/10.1007/BF02392387
- Allen Weitsman, A growth property of the Nevanlinna characteristic, Proc. Amer. Math. Soc. 26 (1970), 65–70. MR 261005, DOI https://doi.org/10.1090/S0002-9939-1970-0261005-8
- Lo Yang, Growth and angular distribution of entire functions, Complex Variables Theory Appl. 13 (1989), no. 1-2, 155–160. MR 1029363, DOI https://doi.org/10.1080/17476938908814385
- Lo Yang and Kuan Heo Chang, Sur la distribution des directions de Borel des fonctions méromorphes, Sci. Sinica 16 (1973), 465–482 (French). MR 444952
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D35, 30D30
Retrieve articles in all journals with MSC: 30D35, 30D30
Additional Information
Article copyright:
© Copyright 1988
American Mathematical Society