The central limit theorem for empirical processes under local conditions: the case of Radon infinitely divisible limits without Gaussian component
HTML articles powered by AMS MathViewer
- by Niels T. Andersen, Evarist Giné and Joel Zinn
- Trans. Amer. Math. Soc. 308 (1988), 603-635
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930076-3
- PDF | Request permission
Abstract:
Weak convergence results are obtained for empirical processes indexed by classes $\mathcal {F}$ of functions in the case of infinitely divisible purely Poisson (in particular, stable) Radon limits, under conditions on the local modulus of the processes $\{ f(X): f \in \mathcal {F}\}$ ("bracketing" conditions). They extend (and slightly improve upon) a central limit theorem of Marcus and Pisier (1984) for Lipschitzian processes. The law of the iterated logarithm is also considered. The examples include Marcinkiewicz type laws of large numbers for weighted empirical processes and for the dual-bounded-Lipschitz distance between a probability in ${\mathbf {R}}$ and its associated empirical measures.References
- Alejandro de Acosta, Inequalities for $B$-valued random vectors with applications to the strong law of large numbers, Ann. Probab. 9 (1981), no. 1, 157–161. MR 606806
- Alejandro de Acosta, Aloisio Araujo, and Evarist Giné, On Poisson measures, Gaussian measures and the central limit theorem in Banach spaces, Probability on Banach spaces, Adv. Probab. Related Topics, vol. 4, Dekker, New York, 1978, pp. 1–68. MR 515429
- N. T. Andersen and V. Dobrić, The central limit theorem for stochastic processes, Ann. Probab. 15 (1987), no. 1, 164–177. MR 877596
- Niels T. Andersen, Evarist Giné, Mina Ossiander, and Joel Zinn, The central limit theorem and the law of iterated logarithm for empirical processes under local conditions, Probab. Theory Related Fields 77 (1988), no. 2, 271–305. MR 927241, DOI 10.1007/BF00334041 G. W. Bennett (1962), Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 57, 33-45.
- Miklós Csörgő, Sándor Csörgő, Lajos Horváth, and David M. Mason, Normal and stable convergence of integral functions of the empirical distribution function, Ann. Probab. 14 (1986), no. 1, 86–118. MR 815961
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- Evarist Giné and Joel Zinn, Central limit theorems and weak laws of large numbers in certain Banach spaces, Z. Wahrsch. Verw. Gebiete 62 (1983), no. 3, 323–354. MR 688642, DOI 10.1007/BF00535258
- Evarist Giné and Joel Zinn, Empirical processes indexed by Lipschitz functions, Ann. Probab. 14 (1986), no. 4, 1329–1338. MR 866353
- Evarist Giné and Joel Zinn, Some limit theorems for empirical processes, Ann. Probab. 12 (1984), no. 4, 929–998. With discussion. MR 757767
- Evarist Giné and Joel Zinn, Lectures on the central limit theorem for empirical processes, Probability and Banach spaces (Zaragoza, 1985) Lecture Notes in Math., vol. 1221, Springer, Berlin, 1986, pp. 50–113. MR 875007, DOI 10.1007/BFb0099111
- Bernard Heinkel, Majorizing measures and limit theorems for $c_{0}$-valued random variables, Probability in Banach spaces, IV (Oberwolfach, 1982) Lecture Notes in Math., vol. 990, Springer, Berlin, 1983, pp. 136–149. MR 707514, DOI 10.1007/BFb0064268 —, (1987), Some exponential inequalities with applications to the central limit theorem in $C[0,\,1]$ (to appear). J. Høffmann-Jorgensen (1984), Stochastic processes on Polish spaces (to appear).
- Naresh C. Jain and Michael B. Marcus, Central limit theorems for $C(S)$-valued random variables, J. Functional Analysis 19 (1975), 216–231. MR 0385994, DOI 10.1016/0022-1236(75)90056-7
- D. Yuknyavichene, The central limit theorem in the space $C(S)$ and majorizing measures, Litovsk. Mat. Sb. 26 (1986), no. 2, 362–373 (Russian, with English and Lithuanian summaries). MR 862754
- J. Kuelbs and Joel Zinn, Some stability results for vector valued random variables, Ann. Probab. 7 (1979), no. 1, 75–84. MR 515814
- Michel Ledoux, Loi du logarithme itéré dans ${\cal C}(S)$ et fonction caractéristique empirique, Z. Wahrsch. Verw. Gebiete 60 (1982), no. 3, 425–435 (French). MR 664427, DOI 10.1007/BF00535725
- M. Ledoux and M. Talagrand, Characterization of the law of the iterated logarithm in Banach spaces, Ann. Probab. 16 (1988), no. 3, 1242–1264. MR 942766
- V. Mandrekar and J. Zinn, Central limit problem for symmetric case: convergence to non-Gaussian laws, Studia Math. 67 (1980), no. 3, 279–296. MR 592390, DOI 10.4064/sm-67-3-279-296
- Michael B. Marcus, $\xi$-radial processes and random Fourier series, Mem. Amer. Math. Soc. 68 (1987), no. 368, viii+181. MR 897272, DOI 10.1090/memo/0368
- M. B. Marcus and G. Pisier, Characterizations of almost surely continuous $p$-stable random Fourier series and strongly stationary processes, Acta Math. 152 (1984), no. 3-4, 245–301. MR 741056, DOI 10.1007/BF02392199
- M. B. Marcus and G. Pisier, Some results on the continuity of stable processes and the domain of attraction of continuous stable processes, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 2, 177–199 (English, with French summary). MR 749623
- Vygantas Paulauskas and A. Yu. Rachkauskas, Operators of stable type, Litovsk. Mat. Sb. 24 (1984), no. 2, 145–159 (Russian, with English and Lithuanian summaries). MR 773603
- Gilles Pisier, Remarques sur les classes de Vapnik-Červonenkis, Ann. Inst. H. Poincaré Probab. Statist. 20 (1984), no. 4, 287–298 (French, with English summary). MR 771890
- William F. Stout, Almost sure convergence, Probability and Mathematical Statistics, Vol. 24, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0455094
- Michel Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), no. 1-2, 99–149. MR 906527, DOI 10.1007/BF02392556 —, (1986), Necessary conditions for sample boundedness of $p$-stable processes (to appear).
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 603-635
- MSC: Primary 60F17; Secondary 60F05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930076-3
- MathSciNet review: 930076