Some P.V.-equivalences and a classification of $2$-simple prehomogeneous vector spaces of type $\textrm {II}$
HTML articles powered by AMS MathViewer
- by Tatsuo Kimura, Shin-ichi Kasai, Masanobu Taguchi and Masaaki Inuzuka
- Trans. Amer. Math. Soc. 308 (1988), 433-494
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951617-6
- PDF | Request permission
Abstract:
A classification of $2$-simple prehomogeneous vector spaces is completed by using some P.V.-equivalences together with [3]. Some part is very different from the previous classification of the irreducible or simple cases [1, 2], and some new method is necessary. This result shows the difficult point of a classification problem of reductive prehomogeneous vector spaces.References
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- Tatsuo Kimura, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra 83 (1983), no. 1, 72–100. MR 710588, DOI 10.1016/0021-8693(83)90138-2
- Tatsuo Kimura, Shin-ichi Kasai, Masaaki Inuzuka, and Osami Yasukura, A classification of $2$-simple prehomogeneous vector spaces of type $\textrm {I}$, J. Algebra 114 (1988), no. 2, 369–400. MR 936979, DOI 10.1016/0021-8693(88)90300-6
- Tatsuo Kimura, Shin-ichi Kasai, and Osami Yasukura, A classification of the representations of reductive algebraic groups which admit only a finite number of orbits, Amer. J. Math. 108 (1986), no. 3, 643–691. MR 844634, DOI 10.2307/2374658
- Tatsuo Kimura and Shin-ichi Kasai, The orbital decomposition of some prehomogeneous vector spaces, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 437–480. MR 803343, DOI 10.2969/aspm/00610437
- Zhi Jie Chen, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic $p$. I, Chinese Ann. Math. Ser. A 6 (1985), no. 1, 39–48 (Chinese). An English summary appears in Chinese Ann. Math. Ser. B 6 (1985), no. 1, 126–127. MR 795688 —, Fonction zeta associée a un espace prehomogène et sommes de Gauss, Publ. de l’Institut de Recherche Math. Avancée (to appear).
- Akihiko Gyoja and Noriaki Kawanaka, Gauss sums of prehomogeneous vector spaces, Proc. Japan Acad. Ser. A Math. Sci. 61 (1985), no. 1, 19–22. MR 798028 A. Gyoja, On irreducible regular prehomogeneous vector space I (in preparation).
- Jun-ichi Igusa, A classification of spinors up to dimension twelve, Amer. J. Math. 92 (1970), 997–1028. MR 277558, DOI 10.2307/2373406
- Jun-ichi Igusa, Some results on $p$-adic complex powers, Amer. J. Math. 106 (1984), no. 5, 1013–1032. MR 761577, DOI 10.2307/2374271
- Jun-ichi Igusa, On functional equations of complex powers, Invent. Math. 85 (1986), no. 1, 1–29. MR 842045, DOI 10.1007/BF01388789 —, On a certain class of prehomogeneous vector spaces, 1985, preprint.
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- N. Kawanaka, Generalized Gel′fand-Graev representations of exceptional simple algebraic groups over a finite field. I, Invent. Math. 84 (1986), no. 3, 575–616. MR 837529, DOI 10.1007/BF01388748
- Tatsuo Kimura, The $b$-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J. 85 (1982), 1–80. MR 648417, DOI 10.1017/S0027763000019656
- Iris Muller, Hubert Rubenthaler, and Gérard Schiffmann, Structure des espaces préhomogènes associés à certaines algèbres de Lie graduées, Math. Ann. 274 (1986), no. 1, 95–123 (French). MR 834108, DOI 10.1007/BF01458019
- Masakazu Muro, Singular spectrum of hyperfunctions and Fourier transforms of group invariant measures on singular orbits of prehomogeneous vector spaces. II. The case of indefinite quadratic forms, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 5 (1984), 73–102. MR 737363
- Ikuz\B{o} Ozeki, On the microlocal structure of the regular prehomogeneous vector space associated with $\textrm {SL}(5)\times \textrm {GL}(4)$. I, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 2, 37–40 (1 fold-out). MR 528224 H. Rubenthaler, Espaces prehomogènes de type parabolique, Publ. de l’Institut de Recherche Math. Avancée.
- I. Satake and J. Faraut, The functional equation of zeta distributions associated with formally real Jordan algebras, Tohoku Math. J. (2) 36 (1984), no. 3, 469–482. MR 756029, DOI 10.2748/tmj/1178228811
- Fumihiro Sat\B{o}, Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations, Tohoku Math. J. (2) 34 (1982), no. 3, 437–483. MR 676121, DOI 10.2748/tmj/1178229205
- M. Sato, M. Kashiwara, T. Kimura, and T. Ōshima, Microlocal analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980/81), no. 1, 117–179. MR 595585, DOI 10.1007/BF01391666
- Mikio Sato and Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131–170. MR 344230, DOI 10.2307/1970844
- Yasuo Teranishi, Relative invariants and $b$-functions of prehomogeneous vector spaces $(G\times \textrm {GL}(d_1,\cdots ,d_r),\~p_1, M(n,\textbf {C}))$, Nagoya Math. J. 98 (1985), 139–156. MR 792777, DOI 10.1017/S0027763000021425
- Yasuo Teranishi, The functional equation of zeta distributions associated with prehomogeneous vector spaces $(\~G,\~\rho ,M(n,\textbf {C}))$, Nagoya Math. J. 99 (1985), 131–146. MR 805085, DOI 10.1017/S002776300002153X
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 433-494
- MSC: Primary 11R20; Secondary 11E99, 11N25, 11R18, 11R29, 32M10
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951617-6
- MathSciNet review: 951617