Hardy spaces of vector-valued functions: duality
Author:
Oscar Blasco
Journal:
Trans. Amer. Math. Soc. 308 (1988), 495-507
MSC:
Primary 46E40; Secondary 28B05, 42B30, 46E30
DOI:
https://doi.org/10.1090/S0002-9947-1988-0951618-8
MathSciNet review:
951618
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove here that the Hardy space of $B$-valued functions ${H^1}(B)$ defined by using the conjugate function and the one defined in terms of $B$-valued atoms do not coincide for a general Banach space. The condition for them to coincide is the UMD property on $B$. We also characterize the dual space of both spaces, the first one by using ${B^{\ast }}$-valued distributions and the second one in terms of a new space of vector-valued measures, denoted $\mathcal {B}\mathcal {M}\mathcal {O}({B^{\ast }})$, which coincides with the classical $\operatorname {BMO} ({B^{\ast }})$ of functions when ${B^{\ast }}$ has the RNP.
- Oscar Blasco, On the dual space of $H^{1,\infty }_B$, Colloq. Math. 55 (1988), no. 2, 253–259. MR 978922, DOI https://doi.org/10.4064/cm-55-2-253-259
- Oscar Blasco, Positive $p$-summing operators on $L_p$-spaces, Proc. Amer. Math. Soc. 100 (1987), no. 2, 275–280. MR 884466, DOI https://doi.org/10.1090/S0002-9939-1987-0884466-2
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI https://doi.org/10.1007/BF02384306 ---, Vector valued singular integrals and ${H^1} - \operatorname {BMO}$ duality, Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczynski, editors, Marcel Dekker, New York, 1986, pp. 1-19.
- A. V. Buhvalov, The conjugates of spaces of analytic vector-valued functions and the duality of functors generated by these spaces, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 30–50, 318 (Russian, with English summary). Investigations on linear operators and the theory of functions, IX. MR 566740
- D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 270–286. MR 730072
- Donald L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 61–108. MR 864712, DOI https://doi.org/10.1007/BFb0076300
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137–153. MR 274767, DOI https://doi.org/10.1090/S0002-9947-1971-0274767-6
- Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. MR 766959, DOI https://doi.org/10.1090/S0273-0979-1985-15291-7
- Ronald R. Coifman, A real variable characterization of $H^{p}$, Studia Math. 51 (1974), 269–274. MR 358318, DOI https://doi.org/10.4064/sm-51-3-269-274
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI https://doi.org/10.1090/S0002-9904-1977-14325-5
- J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- Nicolae Dinculeanu, Linear operations on $L^{p}$-spaces, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 109–124. MR 0341066
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, DOI https://doi.org/10.1090/S0002-9904-1971-12763-5
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI https://doi.org/10.1007/BF02392215
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149 W. Hensgen, Hardy-Raume vektorwertiger Funktionen, Thesis, München 1986.
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI https://doi.org/10.1002/cpa.3160140317 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin, 1983. Y. Katnelson, An introduction to harmonic analysis, Wiley, New York, 1968.
- H. Elton Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 208. MR 0493279
- José L. Rubio de Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), no. 1, 95–105. MR 818174, DOI https://doi.org/10.4064/sm-81-1-95-105
- José L. Rubio de Francia and José L. Torrea, Some Banach techniques in vector-valued Fourier analysis, Colloq. Math. 54 (1987), no. 2, 273–284. MR 948520, DOI https://doi.org/10.4064/cm-54-2-273-284 F. Ruiz and J. L. Torrea, Sobre el dual de espacios de Hardy de funciones con valores vectoriales, Proc. 8th Portuguese-Spanish Conf. Math., vol. I, Univ. of Coimbra, 1981, pp. 257-261.
- Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E40, 28B05, 42B30, 46E30
Retrieve articles in all journals with MSC: 46E40, 28B05, 42B30, 46E30
Additional Information
Keywords:
Bounded mean oscillation measures,
UMD spaces,
Radon-Nikodym property,
vector-valued atoms
Article copyright:
© Copyright 1988
American Mathematical Society