Hardy spaces of vector-valued functions: duality
HTML articles powered by AMS MathViewer
- by Oscar Blasco
- Trans. Amer. Math. Soc. 308 (1988), 495-507
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951618-8
- PDF | Request permission
Abstract:
We prove here that the Hardy space of $B$-valued functions ${H^1}(B)$ defined by using the conjugate function and the one defined in terms of $B$-valued atoms do not coincide for a general Banach space. The condition for them to coincide is the UMD property on $B$. We also characterize the dual space of both spaces, the first one by using ${B^{\ast }}$-valued distributions and the second one in terms of a new space of vector-valued measures, denoted $\mathcal {B}\mathcal {M}\mathcal {O}({B^{\ast }})$, which coincides with the classical $\operatorname {BMO} ({B^{\ast }})$ of functions when ${B^{\ast }}$ has the RNP.References
- Oscar Blasco, On the dual space of $H^{1,\infty }_B$, Colloq. Math. 55 (1988), no. 2, 253–259. MR 978922, DOI 10.4064/cm-55-2-253-259
- Oscar Blasco, Positive $p$-summing operators on $L_p$-spaces, Proc. Amer. Math. Soc. 100 (1987), no. 2, 275–280. MR 884466, DOI 10.1090/S0002-9939-1987-0884466-2
- J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163–168. MR 727340, DOI 10.1007/BF02384306 —, Vector valued singular integrals and ${H^1} - \operatorname {BMO}$ duality, Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczynski, editors, Marcel Dekker, New York, 1986, pp. 1-19.
- A. V. Buhvalov, The conjugates of spaces of analytic vector-valued functions and the duality of functors generated by these spaces, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 30–50, 318 (Russian, with English summary). Investigations on linear operators and the theory of functions, IX. MR 566740
- D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 270–286. MR 730072
- Donald L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 61–108. MR 864712, DOI 10.1007/BFb0076300
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137–153. MR 274767, DOI 10.1090/S0002-9947-1971-0274767-6
- Sun-Yung A. Chang and Robert Fefferman, Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. MR 766959, DOI 10.1090/S0273-0979-1985-15291-7
- Ronald R. Coifman, A real variable characterization of $H^{p}$, Studia Math. 51 (1974), 269–274. MR 358318, DOI 10.4064/sm-51-3-269-274
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964
- Nicolae Dinculeanu, Linear operations on $L^{p}$-spaces, Vector and operator valued measures and applications (Proc. Sympos., Alta, Utah, 1972) Academic Press, New York, 1973, pp. 109–124. MR 0341066
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, DOI 10.1090/S0002-9904-1971-12763-5
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149 W. Hensgen, Hardy-Raume vektorwertiger Funktionen, Thesis, München 1986.
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317 J. L. Journé, Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Math., vol. 994, Springer-Verlag, Berlin, 1983. Y. Katnelson, An introduction to harmonic analysis, Wiley, New York, 1968.
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- José L. Rubio de Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), no. 1, 95–105. MR 818174, DOI 10.4064/sm-81-1-95-105
- José L. Rubio de Francia and José L. Torrea, Some Banach techniques in vector-valued Fourier analysis, Colloq. Math. 54 (1987), no. 2, 273–284. MR 948520, DOI 10.4064/cm-54-2-273-284 F. Ruiz and J. L. Torrea, Sobre el dual de espacios de Hardy de funciones con valores vectoriales, Proc. 8th Portuguese-Spanish Conf. Math., vol. I, Univ. of Coimbra, 1981, pp. 257-261.
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 495-507
- MSC: Primary 46E40; Secondary 28B05, 42B30, 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951618-8
- MathSciNet review: 951618