Explicit formula for weighted scalar nonlinear hyperbolic conservation laws
Authors:
Philippe LeFloch and Jean-Claude Nédélec
Journal:
Trans. Amer. Math. Soc. 308 (1988), 667-683
MSC:
Primary 35L65
DOI:
https://doi.org/10.1090/S0002-9947-1988-0951622-X
MathSciNet review:
951622
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We prove a uniqueness and existence theorem for the entropy weak solution of nonlinear hyperbolic conservation laws of the form \[ \frac {\partial } {{\partial t}}(ru) + \frac {\partial } {{\partial x}}(rf(u)) = 0,\] with initial data and boundary condition. The scalar function $u = u(x, t)$, $x > 0$, $t > 0$, is the unknown, the function $f = f(u)$ is assumed to be strictly convex with inf $f( \cdot ) = 0$ and the weight function $r = r(x)$, $x > 0$, to be positive (for example, $r(x) = {x^\alpha }$, with an arbitrary real $\alpha$). We give an explicit formula, which generalizes a result of P. D. Lax. In particular, a free boundary problem for the flux $r( \cdot )f(u( \cdot , \cdot ))$ at the boundary is solved by introducing a variational inequality. The uniqueness result is obtained by extending a semigroup property due to B. L. Keyfitz.
- C. Bardos, A. Y. le Roux, and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), no. 9, 1017–1034. MR 542510, DOI https://doi.org/10.1080/03605307908820117 S. N. Kruskov, First order quasilinear systems in several independant variables, Math. USSR Sb. 10 (1970), 217-243.
- P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537–566. MR 93653, DOI https://doi.org/10.1002/cpa.3160100406
- Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR 0350216
- O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95–172. MR 0151737, DOI https://doi.org/10.1090/trans2/026/05
- Barbara Keyfitz Quinn, Solutions with shocks: An example of an $L_{1}$-contractive semigroup, Comm. Pure Appl. Math. 24 (1971), 125–132. MR 271545, DOI https://doi.org/10.1002/cpa.3160240203
- Maria Elena Schonbek, Existence of solutions to singular conservation laws, SIAM J. Math. Anal. 15 (1984), no. 6, 1125–1139. MR 762969, DOI https://doi.org/10.1137/0515088 J. A. Smoller, Reaction-diffusion equations and shock waves, vol. 258, Springer-Verlag, 1983.
- G. B. Whitham, Linear and nonlinear waves, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR 0483954 Ph. Le Floch and J. C. Nedelec, Explicit formula for weighted scalar conservation laws, Centre Math. Appl. Ecole Polytechnique, preprint, January 1985. Ph. Le Floch, Contributions á l’étude théorique et á l’approximation numérique des systémes hyperboliques nonlinéaires, Thése, École Polytéchnique, France.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35L65
Retrieve articles in all journals with MSC: 35L65
Additional Information
Article copyright:
© Copyright 1988
American Mathematical Society