Equivalence and strong equivalence of actions on handlebodies
HTML articles powered by AMS MathViewer
- by John Kalliongis and Andy Miller
- Trans. Amer. Math. Soc. 308 (1988), 721-745
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951625-5
- PDF | Request permission
Abstract:
An algebraic characterization is given for the equivalence and strong equivalence classes of finite group actions on $3$-dimensional handlebodies. As one application it is shown that each handlebody whose genus is bigger than one admits only finitely many finite group actions up to equivalence. In another direction, the algebraic characterization is used as a basis for deriving an explicit combinatorial description of the equivalence and strong equivalence classes of the cyclic group actions of prime order on handlebodies with genus larger than one. This combinatorial description is used to give a complete closed-formula enumeration of the prime order cyclic group actions on such handlebodies.References
- Allan L. Edmonds, Transformation groups and low-dimensional manifolds, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 339–366. MR 780973, DOI 10.1090/conm/036/780973
- Allan L. Edmonds, On the equivariant Dehn lemma, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 141–147. MR 813109, DOI 10.1090/conm/044/813109
- Allan L. Edmonds, Surface symmetry. I, Michigan Math. J. 29 (1982), no. 2, 171–183. MR 654478 D. I. Fuchs-Rabinovitch, On the automorphism group of free products. I, Mat. Sb. 8 (1940), 265-276.
- Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200
- Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265. MR 690845, DOI 10.2307/2007076
- Albert Marden, Isomorphisms between Fuchsian groups, Advances in complex function theory (Proc. Sem., Univ. Maryland, College Park, Md., 1973–1974) Lecture Notes in Math., Vol. 505, Springer, Berlin, 1976, pp. 56–78. MR 0412414
- John W. Morgan and Hyman Bass (eds.), The Smith conjecture, Pure and Applied Mathematics, vol. 112, Academic Press, Inc., Orlando, FL, 1984. Papers presented at the symposium held at Columbia University, New York, 1979. MR 758459
- Darryl McCullough and Andy Miller, Homeomorphisms of $3$-manifolds with compressible boundary, Mem. Amer. Math. Soc. 61 (1986), no. 344, xii+100. MR 840832, DOI 10.1090/memo/0344
- Darryl McCullough, Andy Miller, and Bruno Zimmermann, Group actions on handlebodies, Proc. London Math. Soc. (3) 59 (1989), no. 2, 373–416. MR 1004434, DOI 10.1112/plms/s3-59.2.373
- William H. Meeks III and Shing Tung Yau, The equivariant Dehn’s lemma and loop theorem, Comment. Math. Helv. 56 (1981), no. 2, 225–239. MR 630952, DOI 10.1007/BF02566211
- Józef H. Przytycki, Free actions of $Z_{n}$ on handlebodies and surfaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), no. 7, 617–624 (English, with Russian summary). MR 515620
- P. A. Smith, Abelian actions on $2$-manifolds, Michigan Math. J. 14 (1967), 257–275. MR 229236 Wm. Thurston, Three-manifolds with symmetry, preprint, 1982.
- Heiner Zieschang and Bruno Zimmermann, Endliche Gruppen von Abbildungsklassen gefaserter $3$-Mannigfaltigkeiten, Math. Ann. 240 (1979), no. 1, 41–62 (German). MR 524001, DOI 10.1007/BF01428299
- Bruno Zimmermann, Über Abbildungsklassen von Henkelkörpern, Arch. Math. (Basel) 33 (1979/80), no. 4, 379–382 (German). MR 564296, DOI 10.1007/BF01222772
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 721-745
- MSC: Primary 57S25; Secondary 57M12, 57M15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951625-5
- MathSciNet review: 951625