$\textrm {SO}(2)$-equivariant vector fields on $3$-manifolds: moduli of stability and genericity
HTML articles powered by AMS MathViewer
- by Genesio Lima dos Reis and Geovan Tavares dos Santos
- Trans. Amer. Math. Soc. 308 (1988), 747-763
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951626-7
- PDF | Request permission
Abstract:
An open and dense class of vector fields on $3$-dimensional compact manifolds equivariant under the action of $\operatorname {SO} (2)$ is defined. Each such vector field has finite moduli of stability. We also exhibit an open and dense subset of the $\operatorname {SO} (2)$-equivariant gradient vector fields which are structurally stable.References
- Edward Bierstone, General position of equivariant maps, Trans. Amer. Math. Soc. 234 (1977), no. 2, 447–466. MR 464287, DOI 10.1090/S0002-9947-1977-0464287-3
- Raoul Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248–261. MR 64399, DOI 10.2307/1969631
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Mike Field, Equivariant dynamical systems, Bull. Amer. Math. Soc. 76 (1970), 1314–1318. MR 277850, DOI 10.1090/S0002-9904-1970-12657-X
- M. J. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc. 259 (1980), no. 1, 185–205. MR 561832, DOI 10.1090/S0002-9947-1980-0561832-4
- Carlos Gutiérrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc. 241 (1978), 311–320. MR 492303, DOI 10.1090/S0002-9947-1978-0492303-2
- Philip Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexicana (2) 5 (1960), 220–241. MR 141856
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 0501173, DOI 10.1007/BFb0092042
- Nelson G. Markley, The Poincaré-Bendixson theorem for the Klein bottle, Trans. Amer. Math. Soc. 135 (1969), 159–165. MR 234442, DOI 10.1090/S0002-9947-1969-0234442-1 J. Marques Pereira, Bifurcações dos campos vetoriais equivariantes, Thesis, IMPA, 1981.
- W. de Melo, G. L. dos Reis, and P. Mendes, Equivariant diffeomorphisms with simple recurrences on two-manifolds, Trans. Amer. Math. Soc. 289 (1985), no. 2, 793–807. MR 784014, DOI 10.1090/S0002-9947-1985-0784014-4
- Peter Orlik and Frank Raymond, Actions of $\textrm {SO}(2)$ on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR 0263112
- J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, DOI 10.1016/0040-9383(69)90024-X —, A differentiable invariant of topological conjugacies and moduli of stability, Asterisque 49/50 (1977).
- M. J. Pacífico, Structural stability of vector fields on $3$-manifolds with boundary, J. Differential Equations 54 (1984), no. 3, 346–372. MR 760376, DOI 10.1016/0022-0396(84)90148-7
- M. M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101–120. MR 142859, DOI 10.1016/0040-9383(65)90018-2 —, On the classification of flows on $2$-manifolds, Dynamical Systems, Salvador Symposium (M. Peixoto, ed.), Academic Press, 1973.
- Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541, DOI 10.1007/978-1-4612-5703-5
- Charles C. Pugh, The closing lemma, Amer. J. Math. 89 (1967), 956–1009. MR 226669, DOI 10.2307/2373413
- G. L. dos Reis, Structural stability of equivariant vector fields on two-manifolds, Trans. Amer. Math. Soc. 283 (1984), no. 2, 633–643. MR 737889, DOI 10.1090/S0002-9947-1984-0737889-8
- Gerald W. Schwarz, Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 37–135. MR 573821, DOI 10.1007/BF02684776
- S. Smale, The $\Omega$-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 289–297. MR 0271971
- Shlomo Sternberg, On the structure of local homeomorphisms of euclidean $n$-space. II, Amer. J. Math. 80 (1958), 623–631. MR 96854, DOI 10.2307/2372774 S. van Strien, One parameter families of vector fields—Bifurcations near saddle-connections, Thesis, Utrecht, 1982.
- Floris Takens, Partially hyperbolic fixed points, Topology 10 (1971), 133–147. MR 307279, DOI 10.1016/0040-9383(71)90035-8
- Arthur G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150. MR 250324, DOI 10.1016/0040-9383(69)90005-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 747-763
- MSC: Primary 58F10; Secondary 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951626-7
- MathSciNet review: 951626