Engulfing and subgroup separability for hyperbolic groups
HTML articles powered by AMS MathViewer
- by D. D. Long
- Trans. Amer. Math. Soc. 308 (1988), 849-859
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951631-0
- PDF | Request permission
Abstract:
If a group is subgroup separable, otherwise known as locally extended residually finite or LERF, one can pass from immersions to embeddings in some finite covering space. We show that a certain ’engulfing’ property gives subgroup separability for a large and useful class of subgroups of hyperbolic $3$-manifold groups.References
- R. B. J. T. Allenby, J. Boler, B. Evans, L. E. Moser, and C. Y. Tang, Frattini subgroups of $3$-manifold groups, Trans. Amer. Math. Soc. 247 (1979), 275–300. MR 517695, DOI 10.1090/S0002-9947-1979-0517695-8
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- Marshall Hall Jr., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421–432. MR 32642, DOI 10.1090/S0002-9947-1949-0032642-4
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- G. A. Margulis and G. A. Soĭfer, Maximal subgroups of infinite index in finitely generated linear groups, J. Algebra 69 (1981), no. 1, 1–23. MR 613853, DOI 10.1016/0021-8693(81)90123-X
- Peter Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. (2) 17 (1978), no. 3, 555–565. MR 494062, DOI 10.1112/jlms/s2-17.3.555
- John W. Morgan and Hyman Bass (eds.), The Smith conjecture, Pure and Applied Mathematics, vol. 112, Academic Press, Inc., Orlando, FL, 1984. Papers presented at the symposium held at Columbia University, New York, 1979. MR 758459
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0 —, The geometry and topology of $3$-manifolds, Lecture Notes, Princeton, N. J.
- D. D. Long, Immersions and embeddings of totally geodesic surfaces, Bull. London Math. Soc. 19 (1987), no. 5, 481–484. MR 898729, DOI 10.1112/blms/19.5.481
- Alexander Lubotzky, Group presentation, $p$-adic analytic groups and lattices in $\textrm {SL}_{2}(\textbf {C})$, Ann. of Math. (2) 118 (1983), no. 1, 115–130. MR 707163, DOI 10.2307/2006956
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 308 (1988), 849-859
- MSC: Primary 57M05
- DOI: https://doi.org/10.1090/S0002-9947-1988-0951631-0
- MathSciNet review: 951631