A random graph with a subcritical number of edges
HTML articles powered by AMS MathViewer
- by B. Pittel
- Trans. Amer. Math. Soc. 309 (1988), 51-75
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957061-X
- PDF | Request permission
Abstract:
A random graph ${G_n}(\operatorname {prob} (\operatorname {edge} ) = p)\;(p = c/n, 0 < c < 1)$ on $n$ labelled vertices is studied. There are obtained limiting distributions of the following characteristics: the lengths of the longest cycle and the longest path, the total size of unicyclic components, the number of cyclic vertices, the number of distinct component sizes, and the middle terms of the component-size order sequence. For instance, it is proved that, with probability approaching ${(1 - c)^{1/2}}\exp (\sum \nolimits _{j = 1}^l {{c^j}/2j)}$ as $n \to \infty$, the random graph does not have a cycle of length $> l$. Another result is that, with probability approaching $1$, the size of the $\nu$th largest component either equals an integer closest to $a\;\log (bn/\nu {\log ^{5/2}}n)$, $a = a(c)$, $b = b(c)$, or is one less than this integer, provided that $\nu \to \infty$ and $\nu = o(n/{\log ^{5/2}}n)$.References
- Miklós Ajtai, János Komlós, and Endre Szemerédi, The longest path in a random graph, Combinatorica 1 (1981), no. 1, 1–12. MR 602411, DOI 10.1007/BF02579172
- A. D. Barbour, Poisson convergence and random graphs, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 2, 349–359. MR 671189, DOI 10.1017/S0305004100059995
- C. Berge, Principles of combinatorics, Mathematics in Science and Engineering, Vol. 72, Academic Press, New York-London, 1971. Translated from the French. MR 0270922
- Béla Bollobás, Long paths in sparse random graphs, Combinatorica 2 (1982), no. 3, 223–228. MR 698649, DOI 10.1007/BF02579230
- B. Bollobás, T. I. Fenner, and A. M. Frieze, Long cycles in sparse random graphs, Graph theory and combinatorics (Cambridge, 1983) Academic Press, London, 1984, pp. 59–64. MR 777164
- Béla Bollobás, Random graphs, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 809996
- J. H. Curtiss, A note on the theory of moment generating functions, Ann. Math. Statistics 13 (1942), 430–433. MR 7577, DOI 10.1214/aoms/1177731541
- P. Erdős and A. Rényi, On random graphs. I, Publ. Math. Debrecen 6 (1959), 290–297. MR 120167, DOI 10.5486/pmd.1959.6.3-4.12
- P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 17–61 (English, with Russian summary). MR 125031
- Frank Harary and Edgar M. Palmer, Graphical enumeration, Academic Press, New York-London, 1973. MR 0357214
- Leo Katz, Probability of indecomposability of a random mapping function, Ann. Math. Statist. 26 (1955), 512–517. MR 70869, DOI 10.1214/aoms/1177728496
- J. W. Moon, Counting labelled trees, Canadian Mathematical Monographs, No. 1, Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969). MR 0274333
- A. M. Odlyzko and L. B. Richmond, On the number of distinct block sizes in partitions of a set, J. Combin. Theory Ser. A 38 (1985), no. 2, 170–181. MR 784712, DOI 10.1016/0097-3165(85)90066-4
- B. Pittel′, On the probable behaviour of some algorithms for finding the stability number of a graph, Math. Proc. Cambridge Philos. Soc. 92 (1982), no. 3, 511–526. MR 677474, DOI 10.1017/S0305004100060205
- Boris Pittel, Paths in a random digital tree: limiting distributions, Adv. in Appl. Probab. 18 (1986), no. 1, 139–155. MR 827333, DOI 10.2307/1427240 A. Rényi, Some remarks on the theory of trees, Publ. Math. Inst. Hungar. Acad. Sci. 4 (1959), 73-85.
- A. Rényi and G. Szekeres, On the height of trees, J. Austral. Math. Soc. 7 (1967), 497–507. MR 0219440
- J. Riordan, The enumeration of trees by height and diameter, IBM J. Res. Develop. 4 (1960), 473–478. MR 140434, DOI 10.1147/rd.45.0473
- V. N. Sačkov, Veroyatnostnye metody v kombinatornom analize, “Nauka”, Moscow, 1978 (Russian). MR 522165
- G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203–258. MR 107016, DOI 10.1007/BF02559539
- W. Fernandez de la Vega, Long paths in random graphs, Studia Sci. Math. Hungar. 14 (1979), no. 4, 335–340. MR 685900
- Herbert S. Wilf, Three problems in combinatorial asymptotics, J. Combin. Theory Ser. A 35 (1983), no. 2, 199–207. MR 712105, DOI 10.1016/0097-3165(83)90007-9
- E. M. Wright, The number of connected sparsely edged graphs, J. Graph Theory 1 (1977), no. 4, 317–330. MR 463026, DOI 10.1002/jgt.3190010407
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 51-75
- MSC: Primary 05C80
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957061-X
- MathSciNet review: 957061