Function spaces generated by blocks associated with spheres, Lie groups and spaces of homogeneous type
HTML articles powered by AMS MathViewer
- by Aleš Založnik
- Trans. Amer. Math. Soc. 309 (1988), 139-164
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957065-7
- PDF | Request permission
Abstract:
Functions generated by blocks were introduced by M. Taibleson and G. Weiss in the setting of the one-dimensional torus $T$ [TW1]. They showed that these functions formed a space "close" to the class of integrable functions for which we have almost everywhere convergence of Fourier series. Together with S. Lu [LTW] they extended the theory to the $n$-dimensional torus where this convergence result (for Bochner-Riesz means at the critical index) is valid provided we also restrict ourselves to $L\log L$. In this paper we show that this restriction is not needed if the underlying domain is a compact semisimple Lie group (or certain more general spaces of a homogeneous type). Other considerations (for example, these spaces form an interesting family of quasi-Banach spaces; they are connected with the notion of entropy) guide one in their study. We show how this point of view can be exploited in the setting of more general underlying domains.References
- Salomon Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207. MR 1501870, DOI 10.1090/S0002-9947-1936-1501870-1 —, Summation of derived Fourier series, Ann. of Math. 37 (1936), 345-356.
- Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, DOI 10.1090/S0002-9947-1973-0338697-5
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Jean-Louis Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 1, 149–172 (French). MR 361620, DOI 10.5802/aif.496
- Leonardo Colzani, Mitchell H. Taibleson, and Guido Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), no. 6, 873–889. MR 763947, DOI 10.1512/iumj.1984.33.33047
- Robert A. Fefferman, A theory of entropy in Fourier analysis, Adv. in Math. 30 (1978), no. 3, 171–201. MR 520232, DOI 10.1016/0001-8708(78)90036-1
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Shan Zhen Lu, Mitchell H. Taibleson, and Guido Weiss, On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 311–318. MR 654197
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Yves Meyer, Mitchell H. Taibleson, and Guido Weiss, Some functional analytic properties of the spaces $B_q$ generated by blocks, Indiana Univ. Math. J. 34 (1985), no. 3, 493–515. MR 794574, DOI 10.1512/iumj.1985.34.34028
- Fernando Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Indiana Univ. Math. J. 34 (1985), no. 3, 463–492. MR 794573, DOI 10.1512/iumj.1985.34.34027
- Elias M. Stein, Mitchell H. Taibleson, and Guido Weiss, Weak type estimates for maximal operators on certain $H^{p}$ classes, Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, pp. 81–97. MR 639468
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Mitchell H. Taibleson, Estimates for finite expansions of Gegenbauer and Jacobi polynomials, Recent progress in Fourier analysis (El Escorial, 1983) North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 245–253. MR 848151, DOI 10.1016/S0304-0208(08)70289-5
- Mitchell H. Taibleson and Guido Weiss, Certain function spaces connected with almost everywhere convergence of Fourier series, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 95–113. MR 730061
- Mitchell H. Taibleson and Guido Weiss, Spaces generated by blocks, Probability theory and harmonic analysis (Cleveland, Ohio, 1983) Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 209–226. MR 830240
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 139-164
- MSC: Primary 43A85; Secondary 40J05, 43A77, 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957065-7
- MathSciNet review: 957065