Valuations on meromorphic functions of bounded type
Author:
Mitsuru Nakai
Journal:
Trans. Amer. Math. Soc. 309 (1988), 231-252
MSC:
Primary 30F99; Secondary 30D50, 30H05, 46J15
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957069-4
MathSciNet review:
957069
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The primary purpose of this paper is to show that every valuation on the field of meromorphic functions of bounded type on a finitely sheeted unlimited covering Riemann surface is a point valuation if and only if the same is true on its base Riemann surface. The result is then applied to concrete examples and some related results are obtained.
- [1] Lars V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comment. Math. Helv. 24 (1950), 100–134. MR 36318, https://doi.org/10.1007/BF02567028
- [2] Norman L. Alling, The valuation theory of meromorphic function fields, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 8–29. MR 0236404
- [3] Otto Endler, Valuation theory, Springer-Verlag, New York-Heidelberg, 1972. To the memory of Wolfgang Krull (26 August 1899–12 April 1971); Universitext. MR 0357379
- [4] F. Forelli, private communication.
- [5] Bent Fuglede, Sur les fonctions finement holomorphes, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, vii, 57–88 (French, with English summary). MR 644343
- [6] John B. Garnett and Peter W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), no. 1-2, 27–40. MR 793236, https://doi.org/10.1007/BF02392536
- [7] Maurice Heins, Algebraic structure and conformal mapping, Trans. Amer. Math. Soc. 89 (1958), 267–276. MR 96786, https://doi.org/10.1090/S0002-9947-1958-0096786-9
- [8] Maurice Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press, New York-London, 1968. MR 0239054
- [9] Hej Iss’sa, On the meromorphic function field of a Stein variety, Ann. of Math. (2) 83 (1966), 34–46. MR 185143, https://doi.org/10.2307/1970468
- [10] Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- [11] H. L. Royden, Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83 (1956), 269–276. MR 89908, https://doi.org/10.1090/S0002-9947-1956-0089908-5
- [12] H. L. Royden, Rings of meromorphic functions, Proc. Amer. Math. Soc. 9 (1958), 959–965. MR 103974, https://doi.org/10.1090/S0002-9939-1958-0103974-7
- [13] H. L. Royden, Algebras of bounded analytic functions on Riemann surfaces, Acta Math. 114 (1965), 113–142. MR 173763, https://doi.org/10.1007/BF02391819
- [14] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064
- [15] O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776
- [16] M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
- [17] Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241–269. MR 252665, https://doi.org/10.1090/S0002-9947-1969-0252665-2
- [18] Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR 0120249
Retrieve articles in Transactions of the American Mathematical Society with MSC: 30F99, 30D50, 30H05, 46J15
Retrieve articles in all journals with MSC: 30F99, 30D50, 30H05, 46J15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957069-4
Article copyright:
© Copyright 1988
American Mathematical Society