Kazhdan-Lusztig polynomials for Hermitian symmetric spaces
Author:
Brian D. Boe
Journal:
Trans. Amer. Math. Soc. 309 (1988), 279-294
MSC:
Primary 22E46; Secondary 17B10, 32M15
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957071-2
MathSciNet review:
957071
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A nonrecursive scheme is presented to compute the Kazhdan-Lusztig polynomials associated to a classical Hermitian symmetric space, extending a result of Lascoux-Schützenberger for grassmannians. The polynomials for the exceptional Hermitian domains are also tabulated. All the Kazhdan-Lusztig polynomials considered are shown to be monic.
- [1] Brian D. Boe and David H. Collingwood, Intertwining operators between holomorphically induced modules, Pacific J. Math. 124 (1986), no. 1, 73–84. MR 850667
- [2] Brian D. Boe, Thomas J. Enright, and Brad Shelton, Determination of the intertwining operators for holomorphically induced representations of Hermitian symmetric pairs, Pacific J. Math. 131 (1988), no. 1, 39–50. MR 917864
- [3] Walter Borho and Jens Carsten Jantzen, Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra, Invent. Math. 39 (1977), no. 1, 1–53 (German, with English summary). MR 453826, https://doi.org/10.1007/BF01695950
- [4] Luis G. Casian and David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600. MR 900346, https://doi.org/10.1007/BF01166705
- [5] David H. Collingwood, The 𝔫-homology of Harish-Chandra modules: generalizing a theorem of Kostant, Math. Ann. 272 (1985), no. 2, 161–187. MR 796245, https://doi.org/10.1007/BF01450563
- [6] David H. Collingwood, Ronald S. Irving, and Brad Shelton, Filtrations on generalized Verma modules for Hermitian symmetric pairs, J. Reine Angew. Math. 383 (1988), 54–86. MR 921987, https://doi.org/10.1515/crll.1988.383.54
- [7] Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, https://doi.org/10.1016/0021-8693(87)90232-8
- [8] Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. MR 888703, https://doi.org/10.1090/memo/0367
- [9] Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- [10] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, https://doi.org/10.1007/BF01390031
- [11] A. Lascoux and M.-P. Schützenberger, Polynômes de Kazhdan et Lusztig pour les grassmanniennes, Astérisque 87-88 (1981), 249-266.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E46, 17B10, 32M15
Retrieve articles in all journals with MSC: 22E46, 17B10, 32M15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957071-2
Article copyright:
© Copyright 1988
American Mathematical Society