On the canonical rings of some Horikawa surfaces. I
HTML articles powered by AMS MathViewer
- by Valentin Iliev
- Trans. Amer. Math. Soc. 309 (1988), 309-323
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957073-6
- PDF | Request permission
Abstract:
This paper is devoted to finding necessary and sufficient conditions for a graded ring to be the canonical ring of a minimal surface of general type with ${K^2} = 2{p_g} - 3$, ${p_g} \geqslant 3$, and such that its canonical linear system has one base point.References
- E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171–219. MR 318163, DOI 10.1007/BF02685880 E. Griffin, Special fibres in families of plane curves, Ph.D. thesis, Harvard Univ., 1982.
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725 E. Horikawa, On deformations of quintic surfaces, Invent. Math. 31 (1975), 43-85.
- Eiji Horikawa, Algebraic surfaces of general type with small $c^{2}_{1}$. II, Invent. Math. 37 (1976), no. 2, 121–155. MR 460340, DOI 10.1007/BF01418966
- Valentin Iliev, A note on certain surfaces, Bull. London Math. Soc. 16 (1984), no. 2, 135–138. MR 737240, DOI 10.1112/blms/16.2.135
- Kunihiko Kodaira, Pluricanonical systems on algebraic surfaces of general type, J. Math. Soc. Japan 20 (1968), 170–192. MR 224613, DOI 10.2969/jmsj/02010170
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 309-323
- MSC: Primary 14J29
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957073-6
- MathSciNet review: 957073