A Diophantine problem on elliptic curves
HTML articles powered by AMS MathViewer
- by Robert Tubbs
- Trans. Amer. Math. Soc. 309 (1988), 325-338
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957074-8
- PDF | Request permission
Abstract:
This paper examines simultaneous diophantine approximations to coordinates of certain points on a product of elliptic curves. Specifically, let $\wp (z)$ be a Weierstrass elliptic function with algebraic invariants and complex multiplication. Suppose that $\beta$ is cubic over the "field of multiplications" of $\wp (z)$ and that $u \in \mathbb {C}$ such that $\zeta = (\wp (u), \wp (\beta u), \wp ({\beta ^2}u))$ is defined. We study approximations to $\zeta$ by points which lie on curves defined over $\mathbb {Z}$.References
- D. Bertrand, Problèmes locaux, Appendice I, Nombres Transcendants et Groupes Algébriques, Asterisque, pp. 69-70, M. Waldschmidt.
- Alex Bijlsma, An elliptic analogue of the Franklin-Schneider theorem, Ann. Fac. Sci. Toulouse Math. (5) 2 (1980), no. 2, 101–116 (English, with French summary). MR 595193
- W. Dale Brownawell, On the Gel′fond-Fel′dman measure of algebraic independence, Compositio Math. 38 (1979), no. 3, 355–368. MR 535077
- W. D. Brownawell, Some remarks on semi-resultants, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 205–210. MR 0480370
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
- A. O. Gel′fond, Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960. Translated from the first Russian edition by Leo F. Boron. MR 0111736
- A. O. Gel′fond and N. I. Fel′dman, On the measure of relative transcendentality of certain numbers, Izv. Akad. Nauk SSSR Ser. Mat. 14 (1950), 493–500 (Russian). MR 0040349
- David William Masser, Transcendence and abelian functions, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974) Astérisque, Nos. 24-25, Soc. Math. France, Paris, 1975, pp. 177–182. MR 0371828
- D. W. Masser and G. Wüstholz, Zero estimates on group varieties. II, Invent. Math. 80 (1985), no. 2, 233–267. MR 788409, DOI 10.1007/BF01388605
- Patrice Philippon, Lemmes de zéros dans les groupes algébriques commutatifs, Bull. Soc. Math. France 114 (1986), no. 3, 355–383 (French, with English summary). MR 878242
- Robert Tubbs, On the measure of algebraic independence of certain values of elliptic functions, J. Number Theory 23 (1986), no. 1, 60–79. MR 840016, DOI 10.1016/0022-314X(86)90004-1
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 325-338
- MSC: Primary 11J85
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957074-8
- MathSciNet review: 957074