Boundary behavior of invariant Green’s potentials on the unit ball in $\textbf {C}^ n$
HTML articles powered by AMS MathViewer
- by K. T. Hahn and David Singman
- Trans. Amer. Math. Soc. 309 (1988), 339-354
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957075-X
- PDF | Request permission
Abstract:
Let $p(z) = \int _B {G(z, w) d\mu (w)}$ be an invariant Green’s potential on the unit ball $B$ in ${{\mathbf {C}}^n}\;(n \geqslant 1)$, where $G$ is the invariant Green’s function and $\mu$ is a positive measure with $\int _B {{{(1 - |w{|^2})}^n} d\mu (w) < \infty }$. In this paper, a necessary and sufficient condition on a subset $E$ of $B$ such that for every invariant Green’s potential $p$, \[ \lim \limits _{z \to e} \inf {(1 - |z{|^2})^n}p(z) = 0,\qquad e = (1, 0, \ldots , 0)\; \in \partial B,\;z \in E,\] is given. The condition is that the capacity of the sets $E \cap \{ z \in B|\;|z - e| < \varepsilon \}$, $\varepsilon > 0$, is bounded away from $0$. The result obtained here generalizes Luecking’s result, see [L], on the unit disc in ${\mathbf {C}}$.References
- M. Brelot, Lectures on potential theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 19, Tata Institute of Fundamental Research, Bombay, 1967. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy; Second edition, revised and enlarged with the help of S. Ramaswamy. MR 0259146
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5 K. T. Hahn and J. Mitchell, Green’s function on the classical Cartan domains, MRC Tech. Summary Report No. 800, Univ. of Wisconsin, Dec. 1967, 24 pp.
- K. T. Hahn and M. Stoll, Boundary limits of Green potentials on the ball in $\textbf {C}^n$, Complex Variables Theory Appl. 9 (1988), no. 4, 359–371. MR 936479, DOI 10.1080/17476938808814279
- R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571 (French). MR 139756, DOI 10.5802/aif.125
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Daniel H. Luecking, Boundary behavior of Green potentials, Proc. Amer. Math. Soc. 96 (1986), no. 3, 481–488. MR 822445, DOI 10.1090/S0002-9939-1986-0822445-0
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6 I. S. Sokolnikoff, Tensor analysis, Wiley, New York, 1964.
- E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, No. 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0473215
- David Ullrich, Radial limits of $M$-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), no. 2, 501–518. MR 808734, DOI 10.1090/S0002-9947-1985-0808734-8 —, Moebius-invariant potential theory in the unit ball of ${{\mathbf {C}}^n}$, Thesis, Univ. of Wisconsin, Madison, 1981; University Microfilms International, Ann Arbor, Michigan, 1984.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 339-354
- MSC: Primary 32A40; Secondary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1988-0957075-X
- MathSciNet review: 957075