CORRECTION TO "DIFFERENTIAL IDENTITIES IN PRIME RINGS WITH INVOLUTION"

CHARLES LANSKI

An example of Chuang [1] shows that the main results of [2] are false as stated. The purpose of this note is to state the correct versions of these theorems. We shall use the notation in [2], and all references to results are from that paper. We begin by noting that all of the results in [2] before Theorem 4 are correct as stated, and that the correction needed in Theorem 4 requires a subsequent change in Theorem 7 and in Theorem 9. All other results in the paper are correct.

The statement of Theorem 4 concerns a linear $G^*\text{-DI } f$, all of whose exponents come from W, the ordered collection of k-tuples of outer derivations which are independent modulo the inner derivations. For any exponent w appearing in f and coming from W, let f_w be the sum of all monomials in f with exponent w. The error in the proof of Theorem 4 is the assumption that if $f_w(x,y)$ is a $G^*\text{-PI}$ for R, then $f_w(x^w,y^w)$ is also an identify for R. This is true when no involution is present, or equivalently, when y does not appear in f. However, given an exponent w appearing in f, a relation between r and r^* will not in general hold for r^w and $(r^*)^w$, unless $*$ commutes in $\text{End}(R)$ with w. Thus the induction used in Theorem 4 fails. The most important feature of Theorem 4 can be salvaged, using essentially the proof given.

For any w coming from $(d_1,\ldots,d_k) \in W$, let k be the length of w. If $f \in F$ is linear and has all its exponents coming from W, an exponent w appearing in f is said to be of longest length if no other exponent of f has longer length. The conclusion of Theorem 4 is correct for all exponents of longest length, and the following is what the statement of the theorem should be.

THEOREM 4. Let R be a prime ring with $*$, and let $f \in F$ be linear and have all its exponents coming from W, so that $f = \sum_h \sum_i a_{hi}x^h b_{hi} + \sum_k \sum_j c_{kj} y^j d_{kj}$ with all h and k coming from W and all coefficients in N. Suppose that for some nonzero ideal I of R, $f(I) = 0$. Then for each exponent w appearing in f and of longest length, $f_w(x) = \sum_i a_{w_i}x b_{w_i} + \sum_j c_{w_j} y^j d_{w_j}$ is a $G^*\text{-PI}$ for R. In addition, if no y appears in f, or if each exponent appearing in f commutes with $*$ in $\text{End}(R)$, then $f_w(x)$ is a $G^*\text{-PI}$ for R for every exponent w appearing in f.

The proof proceeds as in [2], except that one uses induction on the longest length of exponents appearing in f. One may still assume that R satisfies a GPI by Theorem 1, and if 0 is the longest length then $f = f_1$ is a $G^*\text{-PI}$ for R. As in [2], the expression $g(x) = f(cx) - cf(x)$ is a linear $G^*\text{-DI}$ which contains no basis monomial appearing in f, and has its exponents of longest length at most
one less than the longest length for f. Thus induction can be applied to g. In the case that the longest length for f is 1, $f = f_1(x, y) + \sum f_d(x^d, y^d)$, $g = \sum c_d f_d(x)$, and the Vandermonde type argument given in [2] shows that each $f_d(x)$ is a G^*-PI for R. For the general case, let w_1 be any exponent of f of longest length, and let w_1 come from $(d_1, m_2, \ldots, m_k) \in W$. Write $w_1 = d_1 v$ where v comes from (m_2, \ldots, m_k). As in [2], by induction on k, $g_v(x)$ is a G^*-PI for R, and as in [2] one sees that $g_v(x) = \sum q_s c_d^s f_{w_s}(x)$ where w_s represents any exponent of f of length k which comes from a k-tuple having some d_s inserted in the appropriate place in the ordered $k - 1$ tuple (m_2, \ldots, m_k). Also, q_s counts the number of occurrences of d_s in the k-tuple from which w_s comes. Since the collection of d_s appearing is independent modulo the inner derivations, the Vandermonde type argument shows again that each f_{w_s} is a G^*-PI for R, so in particular, $f_{w}(x)$ is.

To see how Theorem 7 needs to be changed in light of the change to Theorem 4, we recall that for $f \in F$ which is multilinear and homogeneous of degree n, and having all exponents coming from W, $W(f)$ is the set of all n-tuples $\bar{w} = (w_1, \ldots, w_n)$ for which there is a monomial in f having each w_i as the exponent of x_i or y_i. Then for any $\bar{w} \in W(f)$, $f_{\bar{w}}(x_1^{w_1}, \ldots, x_n^{w_n}, y_1^{w_1}, \ldots, y_n^{w_n})$ is the sum of all such monomials. Theorem 7 asserts that if f is a G^*-DI for an ideal I, then each $f_{\bar{w}}(x_1, \ldots, x_n, y_1, \ldots, y_n)$ is a G^*-PI for R. Using the correct statement of Theorem 4 above requires a restriction on which $\bar{w} \in W(f)$ one can use. Call $\bar{w} \in W(f)$ special if after some reordering of subscripts, the length of w_1 is maximal among the lengths of exponents in f appearing with either x_1 or y_1, the length of w_2 is maximal among the lengths of exponents of either x_2 or y_2, appearing in any monomial in which the exponent of x_1, or of y_1, is w_1, and in general, the length of w_i is maximal among the lengths of exponents of x_i or y_i which appear in monomials for which (w_1, \ldots, w_{i-1}) is the exponent sequence of the variables with subscript smaller than i. The proof of Theorem 7 is valid for all $\bar{w} \in W(f)$ which are special, and the following is the correct statement.

THEOREM 7. Let R be a prime ring with involution, $*$, and let $f \in F$ be multilinear and homogeneous of degree n with all exponents coming from W and all subscripts of variables in \{1, 2, \ldots, n\}. For any special $\bar{w} = (w_1, \ldots, w_n) \in W(f)$, let $f_{\bar{w}}(x_1^{w_1}, \ldots, x_n^{w_n}, y_1^{w_1}, \ldots, y_n^{w_n})$ denote the sum of all monomials in f in which x_i or y_i appears with exponent w_i. If f is a G^*-DI for some nonzero ideal I of R, then $f_{\bar{w}}(x_1, \ldots, x_n, y_1, \ldots, y_n)$ is a G^*-PI for R, and R satisfies a GPI, unless $f = 0$ in F. Furthermore, the same conclusion holds for every $\bar{w} \in W(f)$ if either no y appears in f, or if each exponent appearing in f commutes with $*$ in $\text{End}(R)$.

We note for Theorem 7 that in the case when every exponent appearing in f is either a derivation or is 1, then an exponent sequence is special if it contains a maximal number of derivations, although other sequences may be special. For example, if $W(f)$ consists of the sequences $(d, 1, d)$, $(1, d, 1)$, and $(h, 1, 1)$, then each would be special. Finally, it is important to observe that the applications we have made of Theorem 4 and Theorem 7 [3 and 4] are valid as given, using the corrected versions of these two theorems as they appear here.

The last correction needed in [2] is to change the hypothesis of Theorem 9 to assume that for each i, h_i is inner on Q exactly when k_i is inner on Q. With this modification and the comments above, the proof as given in [2] holds.
References

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113