Definable sets in ordered structures. III
HTML articles powered by AMS MathViewer
- by Anand Pillay and Charles Steinhorn
- Trans. Amer. Math. Soc. 309 (1988), 469-476
- DOI: https://doi.org/10.1090/S0002-9947-1988-0943306-9
- PDF | Request permission
Abstract:
We show that any $o$-minimal structure has a strongly $o$-minimal theory.References
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Anand Pillay and Charles Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), no. 2, 565–592. MR 833697, DOI 10.1090/S0002-9947-1986-0833697-X
- Anand Pillay and Charles Steinhorn, Discrete $o$-minimal structures, Ann. Pure Appl. Logic 34 (1987), no. 3, 275–289. Stability in model theory (Trento, 1984). MR 899083, DOI 10.1016/0168-0072(87)90004-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 469-476
- MSC: Primary 03C45; Secondary 03C40, 03C50, 06F99
- DOI: https://doi.org/10.1090/S0002-9947-1988-0943306-9
- MathSciNet review: 943306