Seifert matrices and $6$-knots
HTML articles powered by AMS MathViewer
- by J. A. Hillman and C. Kearton
- Trans. Amer. Math. Soc. 309 (1988), 843-855
- DOI: https://doi.org/10.1090/S0002-9947-1988-0961617-8
- PDF | Request permission
Abstract:
A new classification of simple ${\mathbf {Z}}$-torsion-free $2q$-knots, $q \geqslant 3$, is given in terms of Seifert matrices modulo an equivalence relation. As a result the classification of such $2q$-knots, $q \geqslant 4$, in terms of $F$-forms is extended to the case $q = 3$.References
- M. Š. Farber, Isotopy types of knots of codimension two, Trans. Amer. Math. Soc. 261 (1980), no. 1, 185–209. MR 576871, DOI 10.1090/S0002-9947-1980-0576871-7
- M. Sh. Farber, Classification of simple knots, Uspekhi Mat. Nauk 38 (1983), no. 5(233), 59–106 (Russian). MR 718824
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952–955. MR 324706, DOI 10.1090/S0002-9904-1973-13274-4
- C. Kearton, An algebraic classification of some even-dimensional knots, Topology 15 (1976), no. 4, 363–373. MR 442948, DOI 10.1016/0040-9383(76)90030-6
- C. Kearton, An algebraic classification of certain simple even-dimensional knots, Trans. Amer. Math. Soc. 276 (1983), no. 1, 1–53. MR 684492, DOI 10.1090/S0002-9947-1983-0684492-3
- Michel A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225–271 (French). MR 189052
- Sadayoshi Kojima, A classification of some even dimensional fibered knots, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 671–683. MR 645407
- Sadayoshi Kojima, Classification of simple knots by Levine pairings, Comment. Math. Helv. 54 (1979), no. 3, 356–367. MR 543336, DOI 10.1007/BF02566280
- J. Levine, Unknotting spheres in codimension two, Topology 4 (1965), 9–16. MR 179803, DOI 10.1016/0040-9383(65)90045-5
- J. Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185–198. MR 266226, DOI 10.1007/BF02567325
- H. F. Trotter, On $S$-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173–207. MR 645546, DOI 10.1007/BF01394094
- H. F. Trotter, Knot module and Seifert matrices, Knot theory (Proc. Sem., Plans-sur-Bex, 1977) Lecture Notes in Math., vol. 685, Springer, Berlin, 1978, pp. 291–299. MR 521739
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 843-855
- MSC: Primary 57Q45
- DOI: https://doi.org/10.1090/S0002-9947-1988-0961617-8
- MathSciNet review: 961617