## A construction of pseudo-Anosov homeomorphisms

HTML articles powered by AMS MathViewer

- by Robert C. Penner PDF
- Trans. Amer. Math. Soc.
**310**(1988), 179-197 Request permission

## Abstract:

We describe a generalization of Thurston’s original construction of pseudo-Anosov maps on a surface $F$ of negative Euler characteristic. In fact, we construct whole semigroups of pseudo-Anosov maps by taking appropriate compositions of Dehn twists along certain families of curves; our arguments furthermore apply to give examples of pseudo-Anosov maps on nonorientable surfaces. For each self-map $f:F \to F$ arising from our recipe, we construct an invariant "bigon track" (a slight generalization of train track) whose incidence matrix is Perron-Frobenius. Standard arguments produce a projective measured foliation invariant by $f$. To finally prove that $f$ is pseudo-Anosov, we directly produce a transverse invariant projective measured foliation using tangential measures on bigon tracks. As a consequence of our argument, we derive a simple criterion for a surface automorphism to be pseudo-Anosov.## References

- D. V. Anosov,
*Geodesic flows on closed Riemannian manifolds of negative curvature*, Trudy Mat. Inst. Steklov.**90**(1967), 209 (Russian). MR**0224110** - Pierre Arnoux and Jean-Christophe Yoccoz,
*Construction de difféomorphismes pseudo-Anosov*, C. R. Acad. Sci. Paris Sér. I Math.**292**(1981), no. 1, 75–78 (French, with English summary). MR**610152** - Leon Bernstein,
*The Jacobi-Perron algorithm—Its theory and application*, Lecture Notes in Mathematics, Vol. 207, Springer-Verlag, Berlin-New York, 1971. MR**0285478** - Francis Bonahon,
*Cobordism of automorphisms of surfaces*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 2, 237–270. MR**732345**
A. Fathi, F. Laudenbach, V. Poenaru et al., - Jane Gilman,
*On the Nielsen type and the classification for the mapping class group*, Adv. in Math.**40**(1981), no. 1, 68–96. MR**616161**, DOI 10.1016/0001-8708(81)90033-5 - R. C. Penner and J. L. Harer,
*Combinatorics of train tracks*, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR**1144770**, DOI 10.1515/9781400882458 - Michael Handel and William P. Thurston,
*New proofs of some results of Nielsen*, Adv. in Math.**56**(1985), no. 2, 173–191. MR**788938**, DOI 10.1016/0001-8708(85)90028-3 - Steven P. Kerckhoff,
*The asymptotic geometry of Teichmüller space*, Topology**19**(1980), no. 1, 23–41. MR**559474**, DOI 10.1016/0040-9383(80)90029-4 - Howard Masur,
*Interval exchange transformations and measured foliations*, Ann. of Math. (2)**115**(1982), no. 1, 169–200. MR**644018**, DOI 10.2307/1971341 - Richard T. Miller,
*Geodesic laminations from Nielsen’s viewpoint*, Adv. in Math.**45**(1982), no. 2, 189–212. MR**664623**, DOI 10.1016/S0001-8708(82)80003-0 - Jakob Nielsen,
*Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen*, Acta Math.**50**(1927), no. 1, 189–358 (German). MR**1555256**, DOI 10.1007/BF02421324
A. Papadopoulos, - Athanase Papadopoulos and Robert C. Penner,
*A characterization of pseudo-Anosov foliations*, Pacific J. Math.**130**(1987), no. 2, 359–377. MR**914107** - William P. Thurston,
*On the geometry and dynamics of diffeomorphisms of surfaces*, Bull. Amer. Math. Soc. (N.S.)**19**(1988), no. 2, 417–431. MR**956596**, DOI 10.1090/S0273-0979-1988-15685-6
—, - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0

*Travaux de Thurston sur les surfaces*, Astérisque

**30**(1979), 66-67. F. Gantmacher,

*Theory of matrices*, Chelsea, 1959.

*Réseaux ferroviaires, diffeomorphismes pseudo-Anosov et automorphismes symplectique de l’homologie d’une surface*, Publ. Math. Orsay 83-103, 1983.

*The geometry and topology of three-manifolds*, Princeton lecture notes, 1978. —, Lecture notes from Boulder, Colorado, 1981, taken by W. Goldman.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**310**(1988), 179-197 - MSC: Primary 57N05; Secondary 20F34, 58F15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930079-9
- MathSciNet review: 930079