A construction of pseudo-Anosov homeomorphisms
HTML articles powered by AMS MathViewer
- by Robert C. Penner
- Trans. Amer. Math. Soc. 310 (1988), 179-197
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930079-9
- PDF | Request permission
Abstract:
We describe a generalization of Thurston’s original construction of pseudo-Anosov maps on a surface $F$ of negative Euler characteristic. In fact, we construct whole semigroups of pseudo-Anosov maps by taking appropriate compositions of Dehn twists along certain families of curves; our arguments furthermore apply to give examples of pseudo-Anosov maps on nonorientable surfaces. For each self-map $f:F \to F$ arising from our recipe, we construct an invariant "bigon track" (a slight generalization of train track) whose incidence matrix is Perron-Frobenius. Standard arguments produce a projective measured foliation invariant by $f$. To finally prove that $f$ is pseudo-Anosov, we directly produce a transverse invariant projective measured foliation using tangential measures on bigon tracks. As a consequence of our argument, we derive a simple criterion for a surface automorphism to be pseudo-Anosov.References
- D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov. 90 (1967), 209 (Russian). MR 0224110
- Pierre Arnoux and Jean-Christophe Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 75–78 (French, with English summary). MR 610152
- Leon Bernstein, The Jacobi-Perron algorithm—Its theory and application, Lecture Notes in Mathematics, Vol. 207, Springer-Verlag, Berlin-New York, 1971. MR 0285478
- Francis Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 237–270. MR 732345 A. Fathi, F. Laudenbach, V. Poenaru et al., Travaux de Thurston sur les surfaces, Astérisque 30 (1979), 66-67. F. Gantmacher, Theory of matrices, Chelsea, 1959.
- Jane Gilman, On the Nielsen type and the classification for the mapping class group, Adv. in Math. 40 (1981), no. 1, 68–96. MR 616161, DOI 10.1016/0001-8708(81)90033-5
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770, DOI 10.1515/9781400882458
- Michael Handel and William P. Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985), no. 2, 173–191. MR 788938, DOI 10.1016/0001-8708(85)90028-3
- Steven P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980), no. 1, 23–41. MR 559474, DOI 10.1016/0040-9383(80)90029-4
- Howard Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200. MR 644018, DOI 10.2307/1971341
- Richard T. Miller, Geodesic laminations from Nielsen’s viewpoint, Adv. in Math. 45 (1982), no. 2, 189–212. MR 664623, DOI 10.1016/S0001-8708(82)80003-0
- Jakob Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927), no. 1, 189–358 (German). MR 1555256, DOI 10.1007/BF02421324 A. Papadopoulos, Réseaux ferroviaires, diffeomorphismes pseudo-Anosov et automorphismes symplectique de l’homologie d’une surface, Publ. Math. Orsay 83-103, 1983.
- Athanase Papadopoulos and Robert C. Penner, A characterization of pseudo-Anosov foliations, Pacific J. Math. 130 (1987), no. 2, 359–377. MR 914107
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6 —, The geometry and topology of three-manifolds, Princeton lecture notes, 1978. —, Lecture notes from Boulder, Colorado, 1981, taken by W. Goldman.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 179-197
- MSC: Primary 57N05; Secondary 20F34, 58F15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930079-9
- MathSciNet review: 930079