Extremal analytic discs with prescribed boundary data
HTML articles powered by AMS MathViewer
- by Chin-Huei Chang, M. C. Hu and Hsuan-Pei Lee
- Trans. Amer. Math. Soc. 310 (1988), 355-369
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930081-7
- PDF | Request permission
Abstract:
This paper concerns the existence and uniqueness of extremal analytic discs with prescribed boundary data in a bounded strictly linearly convex domain $D$ in ${{\mathbf {C}}^n}$. We prove that for any two distinct points $p$, $q$ in $\partial D$ (respectively, $p \in \partial D$ and a vector $v$ such that $\sqrt { - 1} v \in {T_p}(\partial D)$ and $\langle v, \overline \nu (p)\rangle = \sum \nolimits _1^n {{v_j}{{\overline \nu }_j}(p) > 0}$ where $\nu (p)$ is the outward normal to $\partial D$ at $p$) there exists an extremal analytic disc $f$ passing through $p$, $q$ if $\partial D \in {C^k}$, $k \geqslant 3$ (respectively, $f(1) = p$, $f’ (1) = v$ if $\partial D \in {C^k}$, $k \geqslant 14$). Consequently, we can foliate $\overline D$ with these extremal analytic discs.References
- Chin Huei Chang, Hsuan Pei Lee, and Ai Nung Wang, Extremal analytic discs and the chains, Chinese J. Math. 13 (1985), no. 4, 239–255. MR 823338
- John Erik Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), no. 2, 529–569. MR 422683, DOI 10.2307/2373900
- Josip Globevnik and Edgar Lee Stout, The ends of discs, Bull. Soc. Math. France 114 (1986), no. 2, 175–195 (English, with French summary). MR 860815
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039
- Howard Jacobowitz, Chains in CR geometry, J. Differential Geom. 21 (1985), no. 2, 163–194. MR 816668
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145
- László Lempert, Intrinsic distances and holomorphic retracts, Complex analysis and applications ’81 (Varna, 1981) Publ. House Bulgar. Acad. Sci., Sofia, 1984, pp. 341–364. MR 883254
- E. A. Poletskiĭ, The Euler-Lagrange equations for extremal holomorphic mappings of the unit disk, Michigan Math. J. 30 (1983), no. 3, 317–333. MR 725784, DOI 10.1307/mmj/1029002908
- Masaaki Suzuki, Complex geodesics on convex domains, Math. Rep. Toyama Univ. 9 (1986), 137–147. MR 864805
- A. G. Vitushkin, Global normalization of a real-analytic surface along a chain, Dokl. Akad. Nauk SSSR 269 (1983), no. 1, 15–18 (Russian). MR 699345
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 355-369
- MSC: Primary 32H15; Secondary 32D15, 32H20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0930081-7
- MathSciNet review: 930081