Normal structure in dual Banach spaces associated with a locally compact group
HTML articles powered by AMS MathViewer
- by Anthony To Ming Lau and Peter F. Mah
- Trans. Amer. Math. Soc. 310 (1988), 341-353
- DOI: https://doi.org/10.1090/S0002-9947-1988-0937247-0
- PDF | Request permission
Abstract:
In this paper we investigated when the dual of a certain function space defined on a locally compact group has certain geometric properties. More particularly, we asked when weak$^{*}$ compact convex subsets in these spaces have normal structure, and when the norm of these spaces satisfies one of several types of Kadec-Klee property. As samples of the results we have obtained, we have proved, among other things, the following two results: (1) The measure algebra of a locally compact group has weak$^{*}$-normal structure iff it has property SUKK$^{*}$ iff it has property SKK$^{*}$ iff the group is discrete; (2) Among amenable locally compact groups, the Fourier-Stieltjes algebra has property SUKK$^{*}$ iff it has property SKK$^{*}$ iff the group is compact. Consequently the Fourier-Stieltjes algebra has weak$^{*}$-normal structure when the group is compact.References
- Charles A. Akemann and Martin E. Walter, Non-abelian Pontriagin duality, Duke Math. J. 39 (1972), 451–463. MR 315046
- Dale E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no. 3, 423–424. MR 612733, DOI 10.1090/S0002-9939-1981-0612733-0
- Jonathan Arazy, More on convergence in unitary matrix spaces, Proc. Amer. Math. Soc. 83 (1981), no. 1, 44–48. MR 619978, DOI 10.1090/S0002-9939-1981-0619978-4
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Ching Chou, Anthony To Ming Lau, and Joseph Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), no. 2, 340–350. MR 784527
- Cho-Ho Chu, A note on scattered $C^{\ast }$-algebras and the Radon-Nikodým property, J. London Math. Soc. (2) 24 (1981), no. 3, 533–536. MR 635884, DOI 10.1112/jlms/s2-24.3.533
- D. F. Cudia, Rotundity, Proc. Sympos. Pure Math., Vol. VII, Amer. Math. Soc., Providence, R.I., 1963, pp. 73–97. MR 0155166
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- D. van Dulst and Brailey Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach space theory and its applications (Bucharest, 1981) Lecture Notes in Math., vol. 991, Springer, Berlin-New York, 1983, pp. 35–43. MR 714171
- D. van Dulst and V. de Valk, (KK)-properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces, Canad. J. Math. 38 (1986), no. 3, 728–750. MR 845675, DOI 10.4153/CJM-1986-038-4
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), no. 3, 459–472. MR 722579, DOI 10.1216/RMJ-1981-11-3-459
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), no. 4, 743–749. MR 595102, DOI 10.1216/RMJ-1980-10-4-743
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- J. D. Knowles, On the existence of non-atomic measures, Mathematika 14 (1967), 62–67. MR 214719, DOI 10.1112/S0025579300008020
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279
- Thomas Landes, Normal structure and weakly normal structure of Orlicz sequence spaces, Trans. Amer. Math. Soc. 285 (1984), no. 2, 523–534. MR 752489, DOI 10.1090/S0002-9947-1984-0752489-1
- Anthony To Ming Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39–59. MR 531968, DOI 10.1090/S0002-9947-1979-0531968-4 A. T. Lau and V. Losert, Complementation of certain subspaces of ${L_\infty }(G)$ of a locally compact group, Pacific J. Math. (to appear).
- Anthony To Ming Lau and Peter F. Mah, Quasinormal structures for certain spaces of operators on a Hilbert space, Pacific J. Math. 121 (1986), no. 1, 109–118. MR 815037
- Chris Lennard, ${\scr C}_1$ is uniformly Kadec-Klee, Proc. Amer. Math. Soc. 109 (1990), no. 1, 71–77. MR 943795, DOI 10.1090/S0002-9939-1990-0943795-4
- Teck Cheong Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), no. 1, 135–143. MR 599326
- V. Losert and H. Rindler, Uniform distribution and the mean ergodic theorem, Invent. Math. 50 (1978/79), no. 1, 65–74. MR 516604, DOI 10.1007/BF01406468
- Paul Milnes, On the extension of continuous and almost periodic functions, Pacific J. Math. 56 (1975), no. 1, 187–193. MR 383006
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), no. 4, 735–750. MR 390721
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264 Z. Semandeni, Banach spaces of continuous functions, PNW, Warsaw, 1971.
- Mark A. Smith and Barry Turett, A reflexive LUR Banach space that lacks normal structure, Canad. Math. Bull. 28 (1985), no. 4, 492–494. MR 812127, DOI 10.4153/CMB-1985-061-9
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 341-353
- MSC: Primary 43A10; Secondary 43A15, 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0937247-0
- MathSciNet review: 937247