Stable maps into free $G$-spaces
HTML articles powered by AMS MathViewer
- by J. P. C. Greenlees
- Trans. Amer. Math. Soc. 310 (1988), 199-215
- DOI: https://doi.org/10.1090/S0002-9947-1988-0938918-2
- PDF | Request permission
Abstract:
In this paper we introduce a systematic method for calculating the group of stable equivariant maps ${[X, Y]^G}$ [3, 18] into a $G$-free space or spectrum $Y$. In fact the method applies without restriction on $X$ whenever $G$ is a $p$-group and $Y$ is $p$-complete and satisfies standard finiteness assumptions. The method is an Adams spectral sequence based on a new equivariant cohomology theory ${c^{\ast }}(X)$ which we introduce in $\S 1$. This spectral sequence is quite calculable and provides a natural generalisation of the classical Adams spectral sequence based on ordinary $\bmod p$ cohomology. It also geometrically realises certain inverse limits of nonequivariant Adams spectral sequences which have been useful in the study of the Segal conjecture [19, 5, 21, 9].References
- J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180β214. MR 96219, DOI 10.1007/BF02564578
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720 β, Prerequisites (on equivariant stable homotopy) for Carlssonβs lecture, Lecture Notes in Math., vol. 1051, Springer-Verlag, 1984, pp. 483-532.
- J. F. Adams, J. H. Gunawardena, and H. Miller, The Segal conjecture for elementary abelian $p$-groups, Topology 24 (1985), no.Β 4, 435β460. MR 816524, DOI 10.1016/0040-9383(85)90014-X
- J. Michael Boardman, Conditionally convergent spectral sequences, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp.Β 49β84. MR 1718076, DOI 10.1090/conm/239/03597
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- Gunnar Carlsson, Equivariant stable homotopy and Segalβs Burnside ring conjecture, Ann. of Math. (2) 120 (1984), no.Β 2, 189β224. MR 763905, DOI 10.2307/2006940
- J. Caruso, J. P. May, and S. B. Priddy, The Segal conjecture for elementary abelian $p$-groups. II. $p$-adic completion in equivariant cohomology, Topology 26 (1987), no.Β 4, 413β433. MR 919728, DOI 10.1016/0040-9383(87)90040-1
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- J. P. C. Greenlees, Representing Tate cohomology of $G$-spaces, Proc. Edinburgh Math. Soc. (2) 30 (1987), no.Β 3, 435β443. MR 908451, DOI 10.1017/S0013091500026833
- J. P. C. Greenlees, Topological methods in equivariant cohomology, Group theory (Singapore, 1987) de Gruyter, Berlin, 1989, pp.Β 373β389. MR 981856 β, Borel homology I, Preprint (1987). β, Borel homology II (in preparation). β, Homotopy equivariance strict equivariance and the Segal conjecture (in preparation).
- G. Lewis, J. P. May, and J. McClure, Ordinary $RO(G)$-graded cohomology, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no.Β 2, 208β212. MR 598689, DOI 10.1090/S0273-0979-1981-14886-2 L. G. Lewis, J. P. May, J. McClure and S. Waner, Equivariant cohomology theory (in preparation).
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Wen Hsiung Lin, On conjectures of Mahowald, Segal and Sullivan, Math. Proc. Cambridge Philos. Soc. 87 (1980), no.Β 3, 449β458. MR 556925, DOI 10.1017/S0305004100056887
- W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces. I, Topology 4 (1965), 47β65. MR 189032, DOI 10.1016/0040-9383(65)90048-0
- J. P. May, The completion conjecture in equivariant cohomology, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp.Β 620β637. MR 764604, DOI 10.1007/BFb0075592
- John Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150β171. MR 99653, DOI 10.2307/1969932
- Jean-Pierre Serre, Sur la dimension cohomologique des groupes profinis, Topology 3 (1965), 413β420 (French). MR 180619, DOI 10.1016/0040-9383(65)90006-6
- William M. Singer, A new chain complex for the homology of the Steenrod algebra, Math. Proc. Cambridge Philos. Soc. 90 (1981), no.Β 2, 279β292. MR 620738, DOI 10.1017/S0305004100058746
- N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133β152. MR 210075, DOI 10.1307/mmj/1028999711
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525
- Richard G. Swan, A new method in fixed point theory, Comment. Math. Helv. 34 (1960), 1β16. MR 115176, DOI 10.1007/BF02565923 S. Waner, Equivariant $RO(G)$-graded singular cohomology, Preprint (1979).
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227β283. MR 137117, DOI 10.1090/S0002-9947-1962-0137117-6
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 199-215
- MSC: Primary 55P42; Secondary 55T15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0938918-2
- MathSciNet review: 938918