Amalgamation for inverse and generalized inverse semigroups
HTML articles powered by AMS MathViewer
- by T. E. Hall
- Trans. Amer. Math. Soc. 310 (1988), 313-323
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965756-7
- PDF | Request permission
Abstract:
For any amalgam $(S, T; U)$ of inverse semigroups, it is shown that the natural partial order on $S{{\ast }_U}T$, the (inverse semigroup) free product of $S$ and $T$ amalgamating $U$, has a simple form on $S \cup T$. In particular, it follows that the semilattice of $S{{\ast }_U}T$ is a bundled semilattice of the corresponding semilattice amalgam $(E(S), E(T); E(U))$; taken jointly with a result of Teruo Imaoka, this gives that the class of generalized inverse semigroups has the strong amalgamation property. Preserving finiteness is also considered.References
- T. E. Hall, Free products with amalgamation of inverse semigroups, J. Algebra 34 (1975), 375–385. MR 382518, DOI 10.1016/0021-8693(75)90164-7
- T. E. Hall, Representation extension and amalgamation for semigroups, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 115, 309–334. MR 509697, DOI 10.1093/qmath/29.3.309
- T. E. Hall, Amalgamation and inverse and regular semigroups, Trans. Amer. Math. Soc. 246 (1978), 395–406. MR 515546, DOI 10.1090/S0002-9947-1978-0515546-8 —, Inverse and regular semigroups and amalgamation: a brief survey, Proc. Sympos. Regular Semigroups, Northern Illinois Univ., De Kalb, Ill., 1979, pp. 49-79.
- T. E. Hall, Generalized inverse semigroups and amalgamation, Semigroups (Proc. Conf., Monash Univ., Clayton, 1979) Academic Press, New York-London, 1980, pp. 145–157. MR 586757
- T. E. Hall, On regular semigroups. II. An embedding, J. Pure Appl. Algebra 40 (1986), no. 3, 215–228. MR 836649, DOI 10.1016/0022-4049(86)90042-3
- T. E. Hall, Finite inverse semigroups and amalgamation, Semigroups and their applications (Chico, Calif., 1986) Reidel, Dordrecht, 1987, pp. 51–56. MR 900644
- T. E. Hall and P. R. Jones, Epis are onto for finite regular semigroups, Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 2, 151–162. MR 705258, DOI 10.1017/S0013091500016850
- T. E. Hall and Mohan S. Putcha, The potential ${\scr J}$-relation and amalgamation bases for finite semigroups, Proc. Amer. Math. Soc. 95 (1985), no. 3, 361–364. MR 806071, DOI 10.1090/S0002-9939-1985-0806071-4
- J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs, No. 7, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0466355
- Teruo Imaoka, Free products with amalgamation of bands, Mem. Fac. Lit. Sci. Shimane Univ. Natur. Sci. 10 (1976), 7–17. MR 430111
- Teruo Imaoka, The embedding of generalized inverse semigroup amalgams, Proceedings of the 2nd Symposium on Semigroups (Tokyo Gakugei Univ., Tokyo, 1978) Tokyo Gakugei Univ., Tokyo, 1978, pp. 41–44. MR 544965 —, The embedding of regular semigroup amalgams, Proc. Sympos. Regular Semigroups, Northern Illinois Univ., De Kalb, Ill., 1979, pp. 92-100.
- Bjarni Jónsson, Extensions of relational structures, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 146–157. MR 0202601
- E. W. Kiss, L. Márki, P. Pröhle, and W. Tholen, Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Sci. Math. Hungar. 18 (1982), no. 1, 79–140. MR 759319
- F. J. Pastijn, Constructions of varieties that satisfy the amalgamation property or the congruence extension property, Studia Sci. Math. Hungar. 17 (1982), no. 1-4, 101–111. MR 761528
- Mario Petrich, Inverse semigroups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 752899
- G. B. Preston, Representations of inverse semigroups by one-to-one partial transformations of a set, Semigroup Forum 6 (1973), no. 3, 240–245; addendum, ibid. 8 (1974), no. 3, 277. MR 376932, DOI 10.1007/BF02389127 L. Silver, Non-commutative localization and applications, J. Algebra 7 (1967), 44-76.
- Bo Stenström, Flatness and localization over monoids, Math. Nachr. 48 (1971), 315–334. MR 296191, DOI 10.1002/mana.19710480124
- Miyuki Yamada, Regular semi-groups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371–392. MR 227302
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 313-323
- MSC: Primary 20M10; Secondary 08B25, 20M17, 20M18
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965756-7
- MathSciNet review: 965756