Banach spaces with separable duals
HTML articles powered by AMS MathViewer
- by M. Zippin
- Trans. Amer. Math. Soc. 310 (1988), 371-379
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965758-0
- PDF | Request permission
Abstract:
It is proved that every Banach space with a separable dual embeds into a space with a shrinking basis. It follows that every separable reflexive space can be embedded in a reflexive space with a basis.References
- W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 0355536, DOI 10.1016/0022-1236(74)90044-5
- David W. Dean, Ivan Singer, and Leonard Sternbach, On shrinking basic sequences in Banach spaces, Studia Math. 40 (1971), 23–33. MR 306876, DOI 10.4064/sm-40-1-23-33
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast }$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI 10.4064/sm-43-1-77-92
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- Richard Haydon, An extreme point criterion for separability of a dual Banach space, and a new proof of a theorem of Corson, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 107, 379–385. MR 493264, DOI 10.1093/qmath/27.3.379
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 0415253
- A. Pełczyński, Some problems on bases in Banach and Fréchet spaces, Israel J. Math. 2 (1964), 132–138. MR 173141, DOI 10.1007/BF02759953
- A. Pełczyński, Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis, Studia Math. 40 (1971), 239–243. MR 308753, DOI 10.4064/sm-40-3-239-243
- M. Zippin, The separable extension problem, Israel J. Math. 26 (1977), no. 3-4, 372–387. MR 442649, DOI 10.1007/BF03007653
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 371-379
- MSC: Primary 46B15; Secondary 46B10
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965758-0
- MathSciNet review: 965758