Finite covers of $3$-manifolds containing essential tori
HTML articles powered by AMS MathViewer
- by John Luecke
- Trans. Amer. Math. Soc. 310 (1988), 381-391
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965759-2
- PDF | Request permission
Abstract:
It is shown in this paper that if a Haken $3$-manifold contains an incompressible torus that is not boundary-parallel then either it has a finite cover that is a torus-bundle over the circle or it has finite covers with arbitrarily large first Betti number.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- Roger C. Alperin and Peter B. Shalen, Linear groups of finite cohomological dimension, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 3, 339–341. MR 609046, DOI 10.1090/S0273-0979-1981-14907-7
- David Gabai, On $3$-manifolds finitely covered by surface bundles, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 145–155. MR 903863
- John Hempel, $3$-Manifolds, Annals of Mathematics Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619
- John Hempel, Homology of coverings, Pacific J. Math. 112 (1984), no. 1, 83–113. MR 739142
- John Hempel, Orientation reversing involutions and the first Betti number for finite coverings of $3$-manifolds, Invent. Math. 67 (1982), no. 1, 133–142. MR 664329, DOI 10.1007/BF01393377 —, Virtually Haken manifolds, preprint.
- Graham. Higman, The units of group-rings, Proc. London Math. Soc. (2) 46 (1940), 231–248. MR 2137, DOI 10.1112/plms/s2-46.1.231 William Jaco, Lectures on $3$-manifold topology, CBMS Regional Conf. Ser. in Math., 43, Amer. Math. Soc., Providence, R.I., 1979. S. Kojima and D. D. Long, Virtual Betti numbers of some hyperbolic $3$-manifolds, preprint.
- Wilhelm Magnus, Noneuclidean tesselations and their groups, Pure and Applied Mathematics, Vol. 61, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0352287
- Pierre Samuel, À propos du théorème des unités, Bull. Sci. Math. (2) 90 (1966), 89–96 (French). MR 204454 William Thurston, The geometry and topology of $3$-manifolds, lecture notes. —, Three dimensional manifolds, Kleinian groups, and hyperbolic geometry, Proc. Sympos. Pure Math., vol 39, Amer. Math. Soc., Providence, R.I., 1983, pp. 87-111.
- Friedhelm Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87–117 (German). MR 235576, DOI 10.1007/BF01402956
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 381-391
- MSC: Primary 57N10; Secondary 57M10
- DOI: https://doi.org/10.1090/S0002-9947-1988-0965759-2
- MathSciNet review: 965759