Multilinear convolutions defined by measures on spheres
HTML articles powered by AMS MathViewer
- by Daniel M. Oberlin
- Trans. Amer. Math. Soc. 310 (1988), 821-835
- DOI: https://doi.org/10.1090/S0002-9947-1988-0943305-7
- PDF | Request permission
Abstract:
Let $\sigma$ be Lebesgue measure on ${\Sigma _{n - 1}}$ and write $\sigma = ({\sigma _1}, \ldots ,{\sigma _n})$ for an element of ${\Sigma _{n - 1}}$. For functions ${f_1}, \ldots ,{f_n}$ on ${\mathbf {R}}$, define \[ T({f_1}, \ldots ,{f_n})(x) = \int _{{\Sigma _{n - 1}}} {{f_1}(x - {\sigma _1}) \cdots {f_n}(x - {\sigma _n}) d\sigma ,\qquad x \in {\mathbf {R}}.} \] This paper partially answers the question: for which values of $p$ and $q$ is there an inequality \[ ||T({f_1}, \ldots ,{f_n})|{|_q} \leqslant C||{f_1}|{|_p} \cdots ||{f_n}|{|_p}?\]References
- J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin, 1976.
- R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 104–122. MR 576041
- Margaret A. M. Murray, Multilinear convolutions and transference, Michigan Math. J. 31 (1984), no. 3, 321–330. MR 767611, DOI 10.1307/mmj/1029003076
- Daniel M. Oberlin, A multilinear Young’s inequality, Canad. Math. Bull. 31 (1988), no. 3, 380–384. MR 956371, DOI 10.4153/CMB-1988-054-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 821-835
- MSC: Primary 42A85; Secondary 42B15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0943305-7
- MathSciNet review: 943305