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THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID. I

IEKE MOERDIJK

ABSTRACT. We investigate some properties of the functor B which asso-

ciates to any continuous groupoid G its classifying topos BG of equivariant

G-sheaves. In particular, it will be shown that the category of toposes can be

obtained as a localization of a category of continuous groupoids.

If G is a group, the category of G-sets (sets equipped with a right G-action) is a

topos BG, which classifies principal G-bundles: for instance, if A is a topological

space there is an equivalence between topos morphisms Sheaves(A) —♦ BG and

principal G-bundles over X.

The construction of BG also applies to the case where G is a topological group,

or more generally, a topological groupoid. It is a rather surprising result that this

essentially exhausts the range of toposes: Joyal and Tierney (1984) have shown

that any topos is equivalent to one of the form BG for a topological group G,

provided one works with a slightly generalized notion of topological space, by taking

the lattice of open sets as the primitive notion, rather than the set of points (one

sometimes speaks of "pointless" spaces). The continuous groupoids of this paper

are the groupoid objects in this category of generalized spaces.

The aim of this paper is threefold. First, G >-> BG is a functor, and we wish

to investigate how the properties of the topos BG depend on those of the contin-

uous groupoid G, and more generally how the properties of a geometric morphism

BG-► BH depend on those of the map of continuous groupoids G —► H. The

second aim is to extend the Joyal-Tierney result, and not only represent toposes in

terms of continuous groupoids, but also the geometric morphisms from one topos

to another. There are several possible solutions to this problem. In this paper, I

present one approach, and show that the category of toposes can be obtained as a

category of fractions from a category of continuous groupoids. Another approach,

somewhat similar in spirit to the Morita theorems for categories of modules, will

be presented elsewhere. The third aim of this paper is of a more methodological

nature: in presenting many arguments concerning generalized, "pointless" spaces, I

have tried to convey the idea that by using change-of-base techniques and exploit-

ing the internal logic of a Grothendieck topos, point-set arguments are perfectly

suitable for dealing with pointless spaces (at least as long as one stays within the

"stable" part of the theory). Although the general underlying idea is very clear (see

e.g. the discussion in 5.3 below), it is a challenging open problem to express this
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as a general metatheorem which allows one to transfer (constructively valid) re-

sults concerning topological spaces immediately to the context of these generalized

spaces.

Let me outline the contents of this paper in more detail. The construction of BG

for a continuous groupoid G is a particular case of a colimit of toposes: one takes

the nerve of G, which is a simplicial space NG, then one takes sheaves to obtain a

simplicial topos Sh(NG), and JBG is simply the colimit of this simplicial topos (in

the appropriate bicategorical sense). Before describing this construction in more

detail in §4, I will first consider the general construction of colimits of toposes, and

prove the following theorem.

THEOREM 1. All (small) indexed colimits of Grothendieck toposes exist, and are

computed as indexed limits of the underlying categories and inverse image functors.

In §3 the special case of a simplicial topos is discussed.

In §5, I will take a slightly different point of view, and regard BG as a category

of spaces equipped with a G-action. The proofs in this section are also intended to

serve the third, methodological, aim just mentioned. The results are of the following

kind:   sufficient conditions are given on homomorphisms G —> TJ of continuous

groupoids to imply that the induced geometric morphism BG -► BH is of a

specific type. For instance, one can give a meaningful definition of when a map of

continuous groupoids is open, full, faithful, and essentially surjective respectively

(cf. 5.5), and prove (see 5.1, 5.15):

THEOREM 2.   IfG—>His open and full then BG-► BH is an atomic map

of toposes.

THEOREM 3. If G —* H is open, full and faithful, and essentially surjective,

then BG-► BH is an equivalence of toposes.

In §6, we will show that the construction of the topos BG is stable under change

of base, at least when the domain and codomain maps are open. Writing B(£?,G)

for the classifying ^-topos of a continuous groupoid G in I?, this can be expressed

as follows:

THEOREM 4. Let &~ -£♦ W be a geometric morphism, and let G be an open

continuous groupoid in <%. Then there is an equivalence of toposes B(&~,p&(G)) —►

FxgB(W,G).

Theorem 4 allows us to use point-set arguments in the context of these classifying

toposes BG. A consequence of Theorem 4 is used to prove the results of §5, such

as Theorems 2 and 3.

It is Theorem 3 that leads to our second aim, namely that of obtaining the cate-

gory of toposes as a category of fractions from a category of continuous groupoids.

Imitating the definition of an equivalence of categories, we call a map <j> of contin-

uous groupoids an essential equivalence if it satisfies the hypotheses of Theorem

3.
The following result will be proved in §7.
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THEOREM 5. The class of essential equivalences admits a right calculus of frac-

tions, and the category of toposes is equivalent to the localization of a category of

continuous groupoids obtained by inverting the essential equivalences.
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1. Preliminaries. In this section I will recall some basic definitions and facts.

1.1. Spaces and locales. Our terminology concerning spaces and locales fol-

lows Joyal and Tierney (1984), in this section referred to as [JT]. So a locale is
IT

a complete Heyting algebra (a "frame"), and a morphism of locales A —► B is a

function which preserves finite meets and arbitrary sups. The category of (general-

ized) spaces is the dual of the category of locales. It contains the category of sober

topological spaces as a full subcategory. If A is a space, the corresponding locale

is denoted by (f(X), and elements of cf(X) are called opens of X.  So a map of

spaces, or a continuous map X —► Y is by definition given as a locale morphism

f-1: (f(Y) -» (f(X).
A point of a space is a map 1 —► X, where 1 is the terminal space, cf(l) =

3°{{*}) = n. A neighbourhood of a point 1 A X is an open U £ Cf(X) such that

* S x~l(U), i.e. 1 -^ X factors through the subspace U C X.

We suppose that the reader is familiar with the basic properties of spaces [JT].

A presentation of a space A is a poset P equipped with a stable system of covering

families, such that cf(X) is isomorphic to the set of downwards closed subsets of P

which are closed for the system of covers, i.e. (f(X) ~ {S C P|(p < q € S =>■ p € S)

and (T covers p, TC S => p € S)}; this is equivalent to saying that P is a site for

the topos of sheaves on X. The opens in the image of the canonical order-preserving

map P —► (f(X) are also called basic opens of X.
r

1.2. Open maps, etale maps (see [JT]). A map X —> K of spaces is open if /_1

has a left-adjoint /(-): cf (X) -» 0(Y) such that the identity f(U A /_1(V)) =

f(U) A V holds. / is an open surjection if /_1 is moreover 1-1, i.e. //_1(^0 = U-

Open maps and open surjections are stable under composition and pullback; and if

X —► Y —* Z are maps such that gf is open and / is a surjection, then g is open.

Recall that U € Cf(X) is called positive if every cover of U contains at least one

element. X —> 1 is open iff X has a presentation consisting of positive opens. A
f

map X —* Y is etale if it is a local homeomorphism (i.e. / is open and there is

an open cover X = \JiUi such that /|C/j: U% —> f(Ui) is an isomorphism). This

is equivalent to requiring that X —► Y and the diagonal X-tlxyl are open.

In particular, X is discrete iff X —» 1 and X —> X x X are open. The usual

equivalence between etale maps into X and sheaves on X also holds in the context

of these generalized spaces.

1.3. Quotients. Colimits of spaces are computed as limits of the corresponding

sets of opens. In particular, given maps X zt Y of spaces, their coequalizer Y -^ Q
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is described by tf(Q) = {U € cf(Y)\f~1(U) = g~l(U)}, and q'1 is the inclusion

cf(Q) —► cf(Y). It is easy to see that if / and g are open, then so is q. Open

surjections are coequalizers of their kernel pairs (Moerdijk (1986), p. 66). It follows

that such coequalizers are stable (a coequalizer X z$ Y —» Q is stable if for any

space I, TxIztTxy-trxQis again a coequalizer). It seems to be a hard

problem to describe the stable coequalizers of spaces (the corresponding problem

for topological spaces is discussed in Day, Kelly (1970)). But at least we conclude

that if X —> 1 is open and R C X x X is an open subspace which is an equivalence

relation, then the coequalizer

R^X± X/R
ri

is stable. (Sketch of proof: q is an open surjection since ry and r2 are, and X/R is

discrete because X/R —► 1 is open, and so is the diagonal X/R —► X/R x X/R, as

follows by considering the square

R    -22^      XxX

iopen

X/R —^-^ X/R x X/R

and using 1.2. To see that R is the kernelpair of X -^ X/R, it suffices to consider

the case where X/R = 1, by writing X = Y[tex/R 9_1(*)- But if X/R = 1, then for

any two positive (cf. 1.2) opens U and V of X, ryr?1^) = q~1q(U) = q~1q(V) =

rir^"1(V), from which it easily follows that R = X x X.)

IA. Toposes. In this paper, topos means Grothendieck topos. We fix one such

topos S? as our base throughout, and work with the comma category of toposes

over 5?. If %> and & are two such toposes, Hom,^(^,^) is the set of geometric

morphisms & —► %? over 5?. These form a category denoted by Homyf^'.i'),

where for f,g: & —+ %?, the maps a: f =>■ g are the natural transformations

/* —► g* over S?. I will often omit the subscript S?, and just write Hom(!f?,%?),

Horn (J?", &"). Moreover, I will often tacitly work inside S", and abuse the language

as if S? = Sets, in the usual way. We recall that (2-categorical) pullbacks of

Grothendieck toposes, which are used throughout this paper, exist (see e.g. [TT,

p. 131]), as well as filtered inverse limits (see Moerdijk (1986)).

1.5. Change of base. We will often work with the category of internal spaces in a

topos I?, (spaces)^. If f? -?-> If is a geometric morphism, p induces an adjunction

p< „
(spaces)g- ±5 (spaces).?-,        p\ -\p*.

pi is defined by Cf(p\Y) = p*(cf (Y)). p# is most easily described in terms of

presentations: if P is a presentation of a space X in I?, then the poset p*(P)

together with the p*-images of the covers in P give a presentation of p*(X).

1.6. Sheaves and spatial reflection ([JT], Johnstone (1981)). A spatial topos

is a topos of the form Sh(A) = sheaves on X, where A is a (generalized) space.

A geometric morphism 9" —► I? is called spatial if it is equivalent to one of the

canonical form Sh^(A) —► %, where A is a space in % and Sh^(A) is the category
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of If-internal sheaves on A. If 3~ —■+ <§* is a geometric morphism, there is a

reflection into spatial toposes over If, which is stable under pullback along an

arbitrary f —► §f, and which preserves products [JT, §VI.5].

1.7. Open maps. A geometric morphism & —* % is open if /* preserves V (i.e.

/* (Va(S)) a V/.(q)/*(5) for any diagram ScI-^Kinf). See the references

[JT], Johnstone (1980) for equivalent characterizations. If & -^ ^ —► If are

geometric morphisms then / o 3 is open if / and g are, and / is open if fg is

and g is a surjection. Open maps and open surjections are stable under pullback

([JT], Johnstone (1980)); open surjections are stable under filtered inverse limits

(Moerdijk (1986), Theorem 5.1(h)).

If & X If is open, then the canonical maps f*(XY) -» f(X)f'(Y) and

/*(^V) —* ftp are mono.

1.8. Locally connected maps, f? —► £? is locally connected if /* has an ^-indexed

left adjoint. This is equivalent to requiring that /* commutes with II-functors (or

that f*/X: %>/X —» Sr/f*(X) preserves exponentials, for every X € If). Locally

connected maps are stable under composition and pullback. (See Barr and Pare

(1980), and Moerdijk (1986), Appendix.)

1.9. Atomic maps. A geometric morphism f? —► % is atomic if /* preserves

exponentials and the subobject classifier; see Barr-Diaconescu (1980).   This is

equivalent to requiring &~ —► If and the diagonal fF —* 9" x%£F to be open [JT].

Atomic maps are closed under pullback and composition.

1.10. LEMMA. Let f§ -^* f?~ —► % be geometric morphisms. If g is an open

surjection and fg is locally connected (resp. atomic) then so is f.

(This follows easily from the last-mentioned property of open maps in 1.7.)

2. Colimits of toposes. The aim of this section is to show that colimits of

toposes exist, and to give an explicit way to construct them.

2.1. Coequalizers. The main example will be that of a (pseudo-) coequalizer. (I

will usually omit the prefix "pseudo", following the common convention in topos

theory, cf. [TT, p. 5].) Suppose we are given a parallel pair of geometric morphisms

/
9~ ■=% If over the base S?. Let 3 be the subcategory of If whose objects are pairs

9

(X, (?), A an object of W and 6: f*(X) ^+ g*(X) an isomorphism in &, and whose

maps (X, 0) —* (Y, £) are If-morphisms X -^+ Y which are compatible with these

isomorphisms, i.e. g*(a)o$ = £of*(a). Write q*: 3 —► W for the forgetful functor

(X,d) y-* X; q* is faithful.

THEOREM. 2 is a Grothendieck topos over S', and q* defines a geometric

morphism W —* 2! making fF z$ & —* Of into a coequalizer of toposes over

5?: for any other topos S(f, q induces an equivalence of categories Eq(^, /, g) —►

\lomrA2.%?). where the left-hand side is the categories of pairs (h,p), If —> %?

a geometric morphism with p: hf => hg.
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PROOF. To see that 3 is a topos and q* defines a geometric morphism, we

use Giraud's criterion [SGA 4, expose IV; TT, p. 16]. So we have to check the

following:

(a) 31 has finite limits,

(b) 3 has all set-indexed coproducts, and these are disjoint and universal,

(c) every equivalence relation in 3 has a universal coequalizer,

(d) every equivalence relation in 3 is effective, and every epimorphism in 3 is

a coequalizer,

(e) 3 has small hom-sets,

(f) 3 has a set of generators.

Now (a)-(e) follow from the corresponding facts for If, using that /* and g*

preserve colimits and finite limits. For example in the case of (d), if (R,0) >—►

(X, p) x (X, p) is an equivalence relation in 3, then R >-+ X x X is an equivalence

relation in £?, and p induces an isomorphism

p/R: f*(X/R) 2 r(X)/f*(R) - g*(X)/g*(R) 2 g*(X/R),

making X/R into an object of 3.

In particular, we see that <7* preserves finite limits and arbitrary colimits, and

thus defines a geometric morphism W —> 3.

Condition (f), however, requires some argument. Suppose C is a site for ?,Da

site for &', full subcategories of %? resp. F and both closed under finite limits, and

that f*,g*: <£ —> !?~ are induced by left exact continuous functors F,G: C —> D

by left Kan extension. For X G Sh(C), P(X) is the presheaf

P(X)(D)=    lim   B(D,FC),

xex(C)
cec

and f*(X) is the associated sheaf of P(X), and similarly g*(X) is the associated

sheaf of the presheaf Q(X) = lim D(£>; GC).

Now define an increasing sequence of (small) full subcategories of If', (C„: n G

N),by

Co = C,

Cn+i = objects of the form   1 T Cj, where Cj G Cn and ^

jej

is the index set of some cover of D.

Let Coo be the full subcategory whose objects are of the form LIneN Cn, Cn G Cn,

and let for 0 < n < oo, Cn be the category whose objects are quotients of objects of

Cn (as a full subcategory of If). I claim that 3 is generated by the set of objects

(C,p) £3 with CG Coo, P- f*(C)^g*(C).
a

To see this, suppose (X, 0) z$ (Y, £) are maps in 3 such that au = j3u for every

(C,p) ^ (X,B) with G G Coo. To show that a = (3, take x0 G X(C0), C0 G C.
xo determines an element f*(xo) G f*(X)(FC0), corresponding to the element of

P(X)(FC0) given by idfCo at the vertex (x0, G0). 8fc0(xo) is given by a family of

elements y3 G Q(X)(Dj), for a cover {Dj —► FC}j€j in D. Say yj is represented

by gj: Dj —► G(Cj) at the vertex (xj,Cj).  Let Cy = \}j€JCj.  Then we have a



THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID 635

map xi = {xj}: Cy —> X, with image Uy C X say, and 9 o /*(xn) factors through

no,) n^ /*w
i »+

g*(Cy)^g*(Uy)>-► g*(X).

Now consider Xj G X(Cj). As before, 9(f*(xj)) is given by {Dji -* FoCj/ie/y and

elements gjr■.: Dji —* G(Cji) at the vertex (iji,Cji). Let

t/j = image j ]J Gjj    x,t > X j ,

so as to get a factorization

r[C])J^l f*(X)
i

g*(Uj)>-► g*(X)

and let C2 = \\jeJ LLe/ C?« G C2, C2 -^+ X the map given by the Xji, and

U2 = image(G2 -^+ X). Then

f*(Cy) -£— /•(*)

i 4-
ff*(tf2)  -► <?*(*)■

Proceed by induction to produce a sequence Cn —^ A, Gn G C„, with image

Un C X, such that there are factorizations

f*(Un)   >-►   F(X)

I       i-
9*(Un+y) >-► 9*(X),

and let £/ = (J„ ^n G Coo- Then 0 restricts to a map f*(U) -* g*(U), making (U, 9)

a subobject of X in 3. Since a\U = fi\U, also a(xo) = /?(xo). Since x0 G AT(Co)

was arbitrary, a = p.

This proves the claim. The other statements in the theorem are obvious.

2.2. Coproducts of toposes. Let (Ifi)ie/ be a set of toposes. The coproduct

Ui€/ ^ as a topos is the product n» ^ as a category. It is well known that IJ ^ is

a topos. In fact, if Ci is a site for ^, then the coproduct Jj Ci of the categories Cj,

equipped with the smallest Grothendieck topology which makes all the inclusions

Cj •—► IJ Ci continuous, is a site for JJ ^.

2.3. Tensors. Let ? be a topos, and let C be a small category. The tensor

If <8> C is a topos such that there is a natural equivalence

Horner <8> C,%?) ~ Cat(C\lomrA%.ScfW
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for any .5^-topos Sf (Cat(—, ?) is the category of functors from - to ?; see Street

(1976), Kelly (1982) for the general definition of this tensor). It is easily verified

that we can explicitly define If <g> C to be the topos Ifc of W-valued functors on

C.

2.4. Indexed colimits. The general setting is as follows (see Street (1980)).

Given a small category K and two pseudofunctors

9: K -» (toposes),    Kop -=♦ Cat,

we wish to construct the indexed colimit w * f§, which is to be a topos such that

there is an equivalence

(1) Hom(w *&,Sf)~ Nat(w,Eom(&-,Sf)),

natural in the parameter topos Sf. (Horn is the category of geometric morphisms,

and Nat is the category of (pseudo) natural transformations between functors K —►

Cat. If 9 and Sf are over the base S?, then so is w * f§, and (1) will hold over S*.)

u

For instance, in the case of 2.1 one takes K = 0- z$ 1 (two parallel nonidentity

arrows u and v), 9(0) = &, 3(1) = %, 9(u) = a,V(«) = /?, u>(l) = 1, w(0) =

■ -^» • (one nonidentity isomorphism). In the case of coproducts, cf. 2.2, one takes

K to be the discrete category /, 9(i) = JiJ, and w the constant functor 1. In the

case of the tensor If ® C, one takes K = 1, 9 has value If, and w has value C.

In the general case, w * 9 can be described as a category in the following

way. The objects of w * 9 are pairs (£>(_), U(_)) where Dk is a diagram of type

w(K) in the topos 9(K), and for K -^+ K' in K, ua is a natural isomorphism

DK o w(a) -^ 9(a)* o DK<: w(K') -* 9(K) of diagrams of type w(K') in the

topos 9(K). Moreover, the ua are required to be coherent, in the sense that for
ct Q

K —y K' —► K" in K, upoa = u@ o ua in the only way that makes sense; that

is, if we suppress the isomorphisms which tell us that w and 9 are pseudofunctors

rather than functors, we require the natural transformation

w(a)
w(K') -► w(K)

w(0)^^ ^\Dk

w(K")^ ^^9{K)
\. aa0 yr

S{K")^r-^9(K')
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to be the same as the composite

w(K)

W(K")-^-yW(K')   ^  Dk'->- Q(K')-£M!-w§(K)

^ 9(K") '

The morphisms (D,u) —♦ (D',u') of w * 9 are families (tk'- K G K) of mor-

phisms of diagrams in 9(K)

DK

w(K)_Jtk       Q(K)

D'K

which are natural in K, i.e. for Ky —► K2,

9(a)* oDKl   na)'TKS  9(ayoDKl

I ft
ua u'a

.   .       tk2°F(cx)
Dk2 o w(a) >   LrK2 o w(a)

This defines a category w * 9. The reader may wish to check but is advised

to believe that colimits and finite limits in w * 9 are computed by just taking the

corresponding colimits and finite limits "pointwise" in each of the toposes 9(K),

K G K, in the obvious way. Then the isomorphism (1) above is easily checked; in

fact it is induced by the (pseudo) natural transformation

w —y Hom(9—. w * 9),

whose components

ttk '■ w(K) -+ Uom(9(K). w * 9)

are defined as follows: taking inverse images, the functor t\k is the same as an

inverse image functor of a geometric morphism 9(K)W(K) —> w * 9, and for this

we can just take the projection (£>_,u_) ■-► Dk-

I suppose that it is possible to show directly that w * 9 has generators. But

fortunately we do not have to go through this, because a result of Street (1980)

says that all indexed colimits can be constructed from coequalizers (2.1), coproducts

(2.2), and tensors (2.3). Thus the following theorem is proved.
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2.5. THEOREM. All small indexed colimits in the bicategory of Grothendieck

toposes exist, and are computed as indexed (bi-)limits of the underlying categories

and inverse image functors.

REMARK. The reader must have noticed that given Street's result, the only

work involved in the proof of 2.5 is to show the existence of coequalizers. This

was proved independently by several people, among whom M. Tierney, P. Freyd,

and the present author. An elegant approach to the existence of colimits is that

via accessible categories, as demonstrated by recent work of Makkai and Pare (to

appear).

3. Simplicial toposes and descent. In this section we consider a special type

of colimit, namely that of a simplicial topos. Simplicial toposes occur naturally in

a variety of circumstances; for instance, sheaves on a simplicial topological space,

the etale topos of a simplicial scheme, etc. To each topos, one can associate the

singular complex, which is a simplicial topos (cf. Moerdijk and Wraith (1986), and

3.10 below).

3.1. Simplicial toposes. Let A be the usual category of finite nonempty sets

[n] = {0,..., n} (n > 0) and <-preserving maps. A simplicial topos 9. is a pseudo-

functor from Aop into toposes (over the base topos S?), i.e. 9. is a sequence of

toposes 9n (n > 0), together with geometric morphisms a: 9m —» 9n for [n] —► \m],

functorial up to a specified coherent isomorphism r = ra^: a o 0 =^> fia (i.e. r is

a natural isomorphism of inverse image functors 0 oa*—y (0a)*). So this is the

usual definition of a simplicial object in a category (see e.g. Gabriel and Zisman

(1967), May (1968)), except that we have to take into account that the category

of toposes and geometric morphisms can only be usefully considered as a 2-category.

Thus, a simplicial topos 9. may alternatively be described as a sequence of toposes

9n, n > 0, together with geometric morphisms 9n —'-* 9n-y (i = 0,..., n) and

9n-y —f* 9n (j = 1,... ,n — 1) satisfying the usual simplicial identities, but only

up to a coherent isomorphism r.

A (pseudo) cocone 9. —'-+ F under a given simplicial topos is a sequence of

geometric morphisms 9n —-* fF (over the base 5?) into a given topos F, together

with natural isomorphisms o~a: f„ o a =► fm which are compatible with the r's.

That is, fjjd is the identity for each [n] -i-» [n], and for [n] -^* [m] —► [k] the square

fna0 -^> fn~0c\

ca-0 a»"

r V

fm0   =^    fk

commutes.

The universal such cocone is the (pseudo) colimit of the simplicial topos 9.

denoted by 9. —'-> L(9.). The topos L(9.) can explicitly be described as the cate-

gory whose objects are sequences ((An)n, £a), Xn an object of 9n and £a: Xm —►

a*(Xn) an isomorphism in 9n for each [n] —► [m], compatible with the r's. We do

not need this description of the topos L(9.), but only its existence, cf. 3.3 below.
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3.2. Descent. Given a simplicial topos 9., consider that part of the data which

only uses the maps
rip dp

di so

©2       ^f       9y       ±5       &o
d2 d\

and the r's between composites of these. A descent cocone into a topos F~ is a

pair (g,p), where 9q —* F~ is a geometric morphism, and p: gdy => gdo is a 2-cell

satisfying

(i) unit condition:

gdys0        "> gd0s0

°\ A
9

commutes, and

(ii) cocycle condition:

pd2

gdyd2    -----=------=--=-->  gd0d2

y       x
gdydy 9dyd0

gd0dy      ===i::i::==:;zzzi>    0<Mo
r

commutes.

In other words, p: dyg -^+ dog is a natural isomorphism such that Sq(p) — id

and do(p) ° d^A*) — dj(p), provided one plugs in enough r-isomorphisms for this

to make sense.

The universal descent cocone is denoted by (p, 9): 9. —► Desc(^). Desc(9.) ex-

ists, cf. 3.3 below, and can explicitly be described as the category whose objects are

pairs (X, 9), where X is an object of 9q and 9: d\(X) -^* do(X) is an isomorphism

such that Sq(9) = id and d0(f?) o d2(9) = d*y(9), provided we plug in some r's as

before.

This category Desc(^) plays an important role in the representation of toposes

by groupoids, cf. Joyal and Tierney (1984), and below.

3.3. Existence of the toposes L(9.) and Desc(9.). These have been defined as

categories, but we have to show that they are Grothendieck toposes, and that the

obvious "forgetful" functors L(9.) —^* 9n and Desc(^) -^-» 90 indeed define inverse

images of universal geometric morphisms {9n -^+ L(9.)}n and <§o -^ Desc(lf).



640 IEKE MOERDIJK

These are all cases of indexed colimits of toposes, however, and therefore this follows

from the general result in §2.

3.4. PROPOSITION. The toposes L(9.) andDesc(9.) are equivalent, and hence

so are the 2-categories of pseudo-cocones and descent cocones, for any simplicial

topos 9.

As a sketch of proof, let me indicate how to pass from a cocone (/., a.): 9. —► fF

to a descent cocone (g, p): 9. —> fF and vice versa, by functors T and U respectively.

Given (fn)n and (cTa)a as in 2.2, define

T(fn,o-a) = (fo,fdy =§> /d0)

where a is the composite

fody = fo O 0 U fy  W /o O T = fodo

(here 0,1: [0] —► [1] denote the maps in A with the corresponding value). Given

(g,p), define U(g,p) = (gn,0n), where gn = gd0-d0 = gn (n: [0] -» [n] has

n(0) = n), and for [n] -^+ [m], aa: gn ° a =► gm is the composite

gna = goftoa => g o a(n) => goOo (a(n),m)

p.(a(n),m) -     ,    ,    .-r _r
==>     g o 1 o (a(n),m) => g o m,

where

mi -i rn   (Q(")'m)   r    l[0] =t [i] -► H
l

denote the obvious maps in A.

A tedious argument shows that these functorial operations T and U are, up to

isomorphism, mutually inverse.

3.5. Localization. Let 9. he a truncated simplicial topos as in 3.2(1), with colimit

Desc(^)

(1) 92^9y^90^Desc(9.),

and let (X, 9) be an object of Desc(^). We obtain an induced truncated simplicial

topos 9/(X,9), namely

dp dp

(2) 92/d*0d*0(X)    -^   9y/d*0(X)    <i    90/X;

di d\

the di and s are defined from di and 8 as follows: dj = d^/X, i.e.

d*o(Y A X) = d*o(Y) ̂ do(X),

d*y(Y   ̂ X)=  d*y(Y)   -^l d*y(X)   ̂   d*Q(X),

and

s*(Z A d*0(X)) = s*(Z) -i^l s*d*Q(X) -I* X.
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The di: 92/d*od*o(X) —> 9y/d*o(X) are defined similarly, just by inserting enough r's

and 0's:

d*0(Y A d*0(X)) = d*0(Y) i^l d*od'0(X),

d*y(Y   A  d*0(X))   =  d*y(Y)   ̂ l  d*yd'0(X)   i  d*Qd*0(X),

d*2(Y ̂ dJ(A)) = d*2(Y) ̂l d*2d*o(X) A dSdKJf) ̂  d0<*0(X).

Let Desc(<§7(X, 0)) be the colimit of this diagram (2). Then we have the following

result.

LOCALIZATION LEMMA. Let 9. be a truncated simplicial topos, and (X,9) an

object of Desc(9), as above.  Then there is a canonical equivalence of toposes

Desc(9./(X,9)) -^ Desc(^)/(X,0).

The proof is by direct inspection.

3.6.   THEOREM.   Let 9. = (92 z$ 9y £=: 9o) be a truncated simplicial topos as

in (1) of 3.2, with universal morphism 9q —-> Desc(lf). p is obviously a surjection.

(a) If do,dy: 9y=X 9q are both open, then so is p.

(b) If do, dy: 9y z$ (§o are both locally connected, and 92=x9y are all open, then

p is locally connected.

(c) If do,dy: 9y zt 9o are both atomic and 92 zt 9y are all open, then p is

atomic.

PROOF, (a) Suppose do,d* both preserve V (cf. 1.7), and consider a diagram

(S,9) >-* (X,9) -^ (Y,p) in Desc(g!). To compute Va(S,0) in Desc(^), a first

approximation would be to take T = VQ(S) C Y in 9. In general, the problem

is that T need not be "closed" under the action p, but if do,d* preserve V, then

d*y(Y) A d^(Y) maps d*y(T) C d*x(Y) into d*0(T) C d*0(Y), as is easy to see. It is

then clear that (T,p) = Va(S,9) in Desc(lf).

(b) We have to show that p* preserves II-functors if the assumptions of (b) hold

(cf. 1.8). Since the assumptions of (b), however, are all stable under slicing by an

object of Desc(lf), cf. 3.5, it is enough to check that p* preserves exponentials if

d^ and d*: 9o z$ 9y do, and do,dy,d2: 92 =% 9y are open.

Given (X,9) and (Y,p) in Desc(^), define the map d*(Xy) -^ d*0(XY) as the

composite

d*y(XY)   -=♦  d*y (Xf^   ̂ -U  d*o(X)d'^      d°{X)"~\   d*o(X)d°^   ̂   d*0(XY).

We need to verify that 9 satisfies the unit and cocycle conditions. The first is a

straightforward diagram chase argument, using maps on test objects T —» XY. For

the cocycle condition, we use that the di: 92 —> 9y are all open, so that for any

objects A,Be9y the canonical map d*(AB) — d*(A)d'< ̂  is mono (cf. 1.7). Thus,

we obtain monomorphisms d2d*y(XY) —y d2d*y(X)d*d'^Y\ etc., and we can therefore

"embed" the to-be-commutative hexagon (the inner one) into the outer hexagon,

which commutes as a simple consequence of the cocycle condition for 9 and p:
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d*d*(Y)
d*yd*y(X) '     1(      )

rl*rl*{Y\'*^'^ H ^^^4.
^^       ' d*yd*y(XY) d*yd*0(Y)

d'^W     ^ T/        \&ip)       d*d°w

d*2d*y(Y) d*ydl(XY)

d*2(9»)\ Ir

d*2d*0(XY) d*0d*o(XY)

d*2dl(Y)J^ >. /dl^)^^ d°dW)
d*2d*0(X) ^^ d*Qd*y(XY) d*0d*0(X)

dod*y(Y) ̂
d*Qd*y(X)

(c) To prove that p is atomic under the given assumptions, we only need to

check that p* preserves the subobject classifier, by (b). Write Ui for the sub-

object classifier of 9i.   Since 9y  z} 9o are atomic, the canonical maps o~i are

isomorphisms d0(Ho) —► Uy <^f- dj(fio), so we can define the composed map

a = Go~xay: dj(fio) -* dj5(fio). We claim that (fio,cr) is the subobject classifier

of Desc(lf). It is rather obvious that (no,cr) would indeed classify subobjects in

Desc(^), provided we show that it is an object of Desc(lf) in the first place. One

easily sees that a satisfies the unit condition. The cocycle condition can be verified

by using that the geometric morphisms 92 —'-y 9y are open, which implies that the

canonical maps d*(fii) —» Q2 are mono (cf. 1.7): it is enough to show that each of

the inner triangles in

r^    d\d*y(Uo)     ^^^}

d*2d*y(Q0) dyd0(n0)

d*2(a) n2 T

d*2d*0(n0)^ d*,d*,(n0)

^^^ k ^%(<r)
d*0d*y(n0)

commutes. For those with a di(cr) as edge this is obvious, and for those with a r it

is straightforwardly checked.

This completes the proof of Theorem 3.6.
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3.7. REMARK.   A similar but easier proof gives an analogous result for co-

equalizers SF zj 9 ■£+ 3 as in 2.1, namely
g

THEOREM.   /// and g are open (resp. locally connected, atomic) then so is p.

3.8. COROLLARY.   Let 92 zt 9y <ri lf0 —* Desc(9.) be a colimit diagram, as

before.

(a) If 9q ^y S* is open, so is Desc(^).

(b) // 9o -* SF is locally connected and 9y zt 9o are open, then Desc(i^) ia

locally connected.

(c) If'§0 —> Sf is atomic and 9y=x9o are open, then so is Desc(^).

PROOF. Apply 1.10 to the triangle

9o -► Desc(^)

\   /

Sf

and use 3.6(a) for (b) and (c).

3.9. COROLLARY.  Let 92 zt 9y i=t 9o —* Desc(S^) be as in 3.8, and suppose

that 9o —y SF, 9y — > 9o Xj? 9o are open (respectively open surjections). Then

Desc(lf) is atomic (resp. atomic connected).

PROOF. We use 1.9. Desc(^) —► Sf is open by 3.8(a); moreover by considering

the diagram
Cp (d0,dl) gp gp
&y -► &o x y ®0

I 1
Desc(^)   —^—  Desc(g:)x^Desc(g:)

it follows that the diagonal A is open (an open surjection) if 9y —> 9q xy %?o is

open (an open surjection).

3.10. EXAMPLE  (taken from Moerdijk and Wraith  (1986)).   Let 9 be a
topos, and let

1 = A0 zt / = Ai z| A2 ■ • •

be the standard cosimplicial topological space (An is the standard n-simplex), but

defined as a cosimplicial locale if Sf ^ Sets. By taking sheaves and exponentiating,

we obtain the singular complex 9Sh(A'\ which is a simplicial topos. The colimit

L(9.) "is" the fundamental group of 9. For instance, if 9 is connected and locally

connected, then 91 —► 9 x 9 is an open surjection (Moerdijk and Wraith (1986)),

and hence by 3.9 and 3.4 L(9.) is an atomic connected topos. A point of 9 gives a

point of L(9.), and it follows that L(9.) is continuous G-sets for a continuous group

G, by a result of Joyal-Tierney (1984), see also 4.3). On some other occasion, I

hope to come back to this construction of a fundamental group of 9, and to its

relation to Grothendieck's construction of the fundamental group of a topos, in

some more detail.
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4. The classifying topos of a continuous groupoid. In this section we

will describe a functor B which associates a topos BG to any groupoid G in the

category of spaces, as an indexed colimit of a simplicial topos.

4.1. Continuous groupoids. A continuous groupoid is a groupoid in the category

of (generalized) spaces (cf. 1.1). So such a groupoid G consists of two spaces Go

(the space of objects) and Gi (the space of arrows), together with domain and

codomain maps do and dy: Gy zt Go, respectively, a unit map Go -^ Gy, and

a multiplication or composition map Gi xGo Gy -^* Gi (in point-set notation:

m(ff>/) = 9 ° f, i-e- Cy xGo Gy is the pullback of Gy —^+ Go on the left and

Gi —i+ Go on the right). These structure maps are supposed to satisfy the usual

identities. The existence of an inverse Gi -► Gi can be expressed by requiring

Gi Xq0 Gy —'■—► Gi Xq0 Gy, as well as (7Ti,m), to be isomorphisms over Gy.

A continuous group is a continuous groupoid with Go = 1; in this case we write

G for Gi, as usual.

A continuous homomorphism, or just a map, of continuous groupoids G —y H is

a pair Gi —U Hy, Go —^* Hq of maps of spaces which satisfy the usual equations.

In the sequel, we will often just work with continuous groupoids G having the
dp

property that Gi zt Go are open maps. Notice that this implies that m is open,
d,

since m = iry o (m,ir2) and (m,n2) is an isomorphism, as just mentioned.

4.2. DEFINITION OF BG. Given a continuous groupoid G, let N.(G) be the

nerve of G, so N. (G) is a simplicial space. (We number the faces and degeneracies of

N.(G) in such a way that do and di: Gi zt Go remain the faces do and di: Ny (G) zt

Aro(G), respectively.)

Applying sheaves, we obtain a simplicial topos Sh(Af.(G)) ~ AT.(Sh(G)). The

topos BG is by definition the (pseudo-) colimit L(Sh(N.(G)) of this simplicial topos,

i.e. we have a universal augmentation

(1) Sh(iV.G) -* BG.

By universality, BG is obviously a (pseudo) functor of G. If G —> 77 is a map

of continuous groupoids, the corresponding geometric morphism is denoted by

B<j>: BG —y BH; sometimes we will just write <f>* for the inverse image (B<p)*.

When we wish to make the base topos explicit in the notation, we will write

B(S",G) tor BG.
By 3.4, BG can alternatively be described as a descent-topos, as indicated by

the diagram

Ti dp

(2) Sh(GyXGoGy)    zt    Sh(Gj)    £    Sh(G0)-SG.
T2 d\

4.3. Facts from Joyal-Tierney (1984). Recall that it is shown in loc. cit. that

every topos 9 over Sf is equivalent to one of the form BG for some continuous
do

groupoid G. In fact, one may assume that Gi zt G0 are open, or even connected
di

and locally connected. If 9 —y SF is open, one may take Go to be an open space

(i.e. Go —y 1 is an open map). Special cases include: that every atomic connected



THE CLASSIFYING TOPOS OF A CONTINUOUS GROUPOID 645

topos with a point is equivalent to BG for a continuous group G (i.e. Go = 1),

and that every etendue is equivalent to BG for a continuous groupoid G with

Gi Xg0 Gi -^-y Gi zt Go all etale maps (an "etale groupoid").
d,

We list some elementary properties of the functor G —► BG which follow from

the results in §3.

4.4. PROPOSITION.   Let G be a continuous groupoid.

(a) If do,dy: Gi zt Go are open, Sh(Go) —► BG is open.
(b) If do,dy: Gi zt Go are locally connected, Sh(Go) —* BG is locally connected.

(c) If do,dy: Gi zt Go are etale, then Sh(Go) —* BG is atomic.

PROOF. Immediate from 3.6.

4.5. PROPOSITION.   Let G be a continuous groupoid.

(a) If Go is open, so is BG.
(b) // Go is locally connected and Gy zt Go are open, then BG is locally con-

nected.

(c) If Go is discrete and Gy is an open space, then BG is atomic. In particular,

if G is an open continuous group, BG is an atomic topos.

PROOF. Immediate from 3.8.

4.6. PROPOSITION.   Let G —> H be a map of continuous groupoids, and let
T3 f

BG-► BH be the induced geometric morphism.

(a) If Go —^-y Ho is open and Hy zt Ho are open, then BG-► BH is open.

(b) If Go -^-y H0 and Hy zt H0 are locally connected, and if Gy zt Go are open,

then BG —* BH is locally connected.

(c) If Go —^-y Hq and Hy zt Ho are etale, and if Gy zt Go are open, then

BG —y BH is atomic.

PROOF. Use 4.5 and apply 1.10 to the square

Sh(G0) -» BG

Sh(H0) -» BH

Proposition 4.5 also allows us to formulate the results of Joyal and Tierney (cf.

4.3) as if-and-only-if's; for (c), one uses 3.9.

4.7. COROLLARY.   Let 9 ^S" be a Grothendieck topos over S"'.  Then

(a) 9 —y S^ is open iff 9 is equivalent to BG for a continuous groupoid G with

Gy zt G0 —y 1 all open maps;

(b) 9 —y Sf is (connected) locally connected iff 9 is equivalent to BG for a

continuous groupoid G with Gy zt Go —► 1 all (connected) locally connected maps;

(c) 9 —y Sf is (connected) atomic iff 9 is equivalent to BG for a continuous

groupoid G with Go —► 1 open (and surjective) and Gy —       » Go x Go open (and

surjective).
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(d) 9 is equivalent to an etendue if 9 is equivalent to BG for an etale groupoid

G (cf. 4.3).

5. G-spaces and e'tale G-spaces. In this section we will extensively analyze

the properties of the functor B, by viewing the topos BG as a category of spaces

equipped with an action of G.

5.1. Important convention. Although some of the results that follow hold for

arbitrary groupoids, we will from now on assume that the structure maps do and

dy: Gy —y Go of any continuous groupoid are open (this implies that Gi Xc0 Gy —►

Gi is open). As said before, any topos 9 is equivalent to BG for such a groupoid

G. For emphasis, we will sometimes call such a G an open groupoid.

5.2. G-spaces.  Let G be a continuous groupoid.  A G-space is a (generalized)

space over Go, E ^* Go, equipped with an action E Xq0 Gy —+ E satisfying the

usual axioms (the pullback here is along Gi —i+ Go). In "point-set notation" (cf.

5.3), we have for points x,y,z in Go, z —► y and y —-► x in Gy, and ein Ex = p_1(x),

(1) p(e-g) = y,

(2) e ■ s(x) = e,

(3) (e- g) ■ h = e- (goh) = e- m(g, h).

A map of G-spaces from (E -^+ Go, ■) to (£" -^-» G0, ■) is a map of spaces E —► E'

over Go which commutes with the action

£xGoGi   —  E

f f

Ef xGo Gy — E'

This defines a category (G-spaces).

A G-space E = (E -£♦ Go, •) is called etale if p is an etale map (a local homeomor-

phism) of generalized spaces (recall that p is etale iff E —y Go and E —► E xGo E

are open, cf. 1.2). This gives a full subcategory (etale G-spaces) of (G-spaces).

By the equivalence between Sh(Go) and etale spaces over Go, we immediately

conclude:

PROPOSITION. The category of etale G-spaces is equivalent to the classifying

topos BG.

5.3. Remark on point-set notation. Of course, Go, Gy, and E are generalized

spaces, which may not have any points at all. Still, the notation in (l)-(3) of 5.2 is

not merely suggestive, but can be taken to be literally the definition of an action,

provided we interpret "points" in a sufficiently liberal way: it is standard practice

in algebraic geometry to express conditions like (l)-(3) by means of test-spaces. So

(1), for instance, becomes:

(1') for any space T and any two maps T -^+ E and T -^ Gy with dyg = pe,

p ■ (e, g) = dog. Now a map T —► E is just a point of E, if we change the base

to Sh(T) and pull back our data along the map Sh(T) —► Sf of toposes. So (1)

makes sense in Sh(T), and if we interpret "point of £"', etc. as point of E in any

base extension Sh(T) —► Sf (or 9 —> Sf for a topos If, for that matter), then (1)

is equivalent to (1').
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Needless to say, this interpretation by change of base only gives the desired result

if pulling back along Sh(T) —► S" also preserves constructions performed on the

data (i.e. these constructions are stable under change of base). In the case of (1),

for instance, this is the construction of the pullback E xGo Gy, which is obviously

preserved by change of base. One has to be very careful, however, when dealing with

constructions which are not necessarily stable, such as the formation of quotients

of spaces.

5.4. Functoriality of G-spaces. Let G —► H be a map of continuous groupoids.

<f> induces a functor <p*: (.//-spaces) —► (G-spaces) by pullback: given E —► J/0 with

action E xHo Hy -^* E, <t>*(E) is the Go-space E x#0 Go -^+ Go with G-action

(E xHo Go) xGo Gy=ExHoGy  (/,°(£x*)'do). E xHo Go;

i.e. in point-set notation, and writing Ey for the fiber p~1(y) (y a point of H0),

<p*(E)x = E^'xy, and for x' -^+ x in Gi and e € E^), e ■ g = e ■ <f>(g) defines the

action of G on cj>*(E).

Obviously, <p* is a functor. Moreover, <f>* maps etale //-spaces to etale G-spaces,

so as to restrict to a functor tp*: BH —y BG. This is precisely the inverse image

(Bqb)* of the geometric morphism B<f>:

(//"-spaces) —► (G-spaces)

U U

BH    -^   BG

Therefore, we will often write 4>*, rather than (B<j>)*.

5.5. DEFINITIONS. Let G —► H be a map of continuous groupoids.

(a) <p is open if <py: Gy —* Hy is open (it follows that <j>q : Go —► Ho is open).

(b) <j> is essentially surjective if Go x#0 Hy l7r2> Hq ((x,<p(x) —> y) i-» y) is an

open surjection.

(c) cj) is full if Gi —y Hy X/h0xh0) (Go x Go) is an open surjection.

(d) <j> is fully faithful if

Gy -*!- Hy

(do.di) (do.di)

Go x Go ^^ Ho x H0

is a pullback of spaces.

5.6. Preview on stability. Let G be a continuous groupoid, with do and di: Gi zt

Go open (cf. 5.1). It is a consequence of the stability theorem, to be proved in the

next section, that the coequalizer

(1) Gi =* Go - n(G)

is stable (see 6.9). That is, if T is any space, then TxGiztTxG0->Tx tt(G) is

again a coequalizer of spaces. In particular, if the structure-maps of the groupoid

are all over some base-space X, ir(G) is a space over X in a unique way which makes

(1) a coequalizer of spaces over X, and by interpreting what we just said in Sh(X),

it follows that for any map T —► X of spaces, T x* Gi zt T xx G0 —► T xx ir(G)

is again a coequalizer.
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5.7. THEOREM. Let G —► H be an open map of continuous groupoids. Then

<j>* has a left adjoint <j>\: (G-spaces) —► (H-spaces); for a G-space D = (D f-+ G0, ■),

<t>\(D) is defined as the coequalizer D ®G H:

(1) DXGoGyXHoHy=== DxGoHy-^D®GH
Dxm(4>xHi)

which is a stable coequalizer of spaces over Ho ■

REMARK. In point-set notation, the maps in (1) are (d G Dx,x' -^ x,y —►

(p(x')) >-y (d ■ g,h), resp. (d, 4>(g) o h), so D ®G H can be thought of as the space

of equivalence classes [d, h] of pairs (d G Dx,y —► 4>(x))- H acts on D ®G H by

composition: [d, h]-h' = [d, hoh']. This point-set notation can be interpreted as a

definition, using change of base, provided the coequalizer (1) is stable.

PROOF. We just indicated how to define an action (D®GH)xHoHy —> (D®GH)

making D®GH into an //-space. However, this definition already uses the stability

of (1), so as to conclude that

(2) (D XGo Gy  XHo Hy) XHo Hy =t (D XHo Hy) XHo Hy -» (D ®G H) XHo Hy

is again a coequalizer. This is indeed the case by 5.6, since the parallel pair of maps

D xGo Gy Xh0 Hy zt D xGo Hy are the do and di of a suitably defined groupoid,

and are both open: <py is open by assumption, and hence D x m(<j> x Hy) is open;

that ■ x Hy is open follows (because for any groupoid, do is open iff di is), but can

also be seen directly, by observing that any action DxGoGy —yD must be an open

map (cf. 5.11).

For a G-space D = (D SU Go, ■) and an //-space E = (E —* Ho, ■) the corre-

spondence

D^ct>*(E) = ExHoGo

D®GH -2+E

goes as follows. Given a, define 0: D xHo Hy —► E to be the composite

D xHo Hy -2U (E xHo Go) xHo Hy -» E xHo Hy A E

(in point-set notation: for d G Dx, y —y <p(x), 0y(d,h) = ax(d) ■ h, where ax(d) G

E<t>(x) = 4>*(E)X). Clearly 0 passes to the quotient and gives a map D ®G H —y E

of //-spaces.

Conversely, given 0, define ay to be the composite D -► D x#0 Hy -yy

D®g H —y E, and let a = (ay,p): D —> E xH G0 (in point-set notation, ax(d) =

0Hx)([d, s(4>(x)))) G E+[x) = <t>*(E)x, for d G Dx).

This proves Theorem 5.7.

In the sequel, we will often just define mappings by point-set notation, when this

is justified by 5.3 (and 5.6).

5.8. PROPOSITION.   Let G —► H be a map of continuous groupoids.

(i) If 4> is essentially surjective, then qb*: (H-spaces) —» (G-spaces) is faithful.

(ii) // (p is moreover full, then <j>* is fully faithful.
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PROOF.  Let E zt E' be maps of //-spaces such that <j>*(a) = <j>*(0): E xHo
0

Go —y E' Xh0 Go- Since di7r2 is a stable surjection Go x#0 Hy —► Ho, so is t in the

pullback square

ExHoGoXHoHy —*—+  E

i I'
Go xHo Hy -^U Ho

(t(e, g, h) = e for e G Ey, x G G0, <j>(x) —+ y in Hy). Now consider the diagram

(ExHoGo)xHoHy  *-^— ExHo(GoXHoHi)  —*—> E
u

<j>'{a)xH,       4>'(0)xH, ax(G0x„0Hi)      0x(CoxHoHl)        a      0

(E' xHo Go) xHo Hy ^— E' xHo (Go xHo Hy) —^— E'
u'

where u is the map defined by u(e, x, h) = (e ■ h, x, h), for e G Ey, x G Go, (<j>(%) —►

y) € Hy; u' is defined similarly. Both right-hand squares (one with a, one with

0) commute by naturality of t, and both left-hand squares commute since a and 0

preserve the action. Since t is a surjection, <j)*(a) = (j>*(0) implies a = 0.

(ii) Suppose given 4>*(E) -^ <j>*(E'). We define E -^ E' such that <j>*(0) = a. I

will give two arguments, as an illustration of the "point-set method":

(a) In point-set language: for y £ Ho, there is a 4>(x) —> y (because Go x#0//i —y

Ho is an open surjection), and we define 0y(e) = a^x)(e ■ h) ■ h~l for e G Ey. This

is well defined, for if (p(x') —► y is another one, write h'~1h = qb(g) for an x -^ x'

(<t> is full). Then

tt0(x')(e • h')h~l = a^{x](e ■ h')tj)(gg~l)h'~l = a4>{x)(e ■ h' ■ (p(g))(h'Xff))-1

= cv0(l)(e-n') -n_1.

This argument actually makes sense, by change of base techniques; "there exists..."

is interpreted as "there exists in some open surjective base extension", and "well

defined on equivalence classes" corresponds to the fact that every open surjection

is the (stable) coequalizer of its kernelpair.

(b) In the language of generalized spaces:  if Go x#0 Hy     l7r2» //0 is an open

surjection, it is the coequalizer of its kernelpair

(G0 xHo Hy) Xh0 (Go x#0 Hy) =t Go xHo Hy-► H0,

and this still holds when we pull back along E —y Ho, i.e.

E xHo (Go Xh0 Hy) xHo (Go xHo Hy) zt E xHo (Go xHo Hy) -U E

is a coequalizer. To define E —► E', it is therefore enough to define

E xHo (Go Xho Hy) A Ef
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with 0 o 7r12 = 0 o 7Ti3. Define 0(e, x, qb(x) —> g) = a(e ■ h)h~l for e G Ey, x G Go,

n G Hy. Then /? o 7r12 = 0 o tt13 because qb is full, and therefore

Hy xGo Gy —► (Go Xh0 Hy) Xh0 (Go Xh0 Hy)

((qb(x) —y y, x' —+ x) i—► (/i, ft o qb(g))) is an open surjection; that 0iry2w = jflirysw

is clear from the fact that a is a map of G-spaces.

The aim of this section is to investigate how properties of BG-» BH depend

on those of G —+ H. In this direction we now have the following corollary, (a)

comes from 4.6(a) and 5.1, (b) and (c) follow from 5.8.

5.9. COROLLARY.   LetG —y H be a map of continuous groupoids, and BG-►

BH the induced geometric morphism.

(a) Bqb is open if Go —^+ Hq is open.

(b) Bqb is surjective if qb is essentially surjective.

(c) Bqb is connected if qb is essentially surjective and full.

Our next aim is to see when BG-► BH is locally connected, i.e. when (Bqb)*

has a B//-indexed left-adjoint. Since Bqb* is qb* restricted to etale spaces, this comes

down to asking (i) when qb\ is indexed over (//"-spaces), and (ii) when qb\ maps etale

G-spaces into etale //-spaces. We begin with the second question.

5.10. THEOREM. Let G —> H be an open map of continuous groupoids, with

corresponding adjoint functors (cf. 5.7).

*i
(G-spaces) *± (H-spaces)

Then qb\ restricts to a functor BG —► BH if <l> is full (cf. 5.1.5).

PROOF. Recall that for a G-space D = (D -^ G0,), qb\(D) is the (stable)

coequalizer

D xGo Gi xHoHy^tDxHoHyU>D®GH,
V

where u(d, g, h) = (d • g, h), v(d, g, h) = (d, qb(g) o h) for d G Dx, x' —y x, y —* qb(x');

see 5.7.

First of all, qb0p: D —* Ho is open since qbo is, and hence so is its pullback

D xHo Hy -^+ Hy along dy, and thus (cf. 5.1) do7r2: D xHo Hy —► i/0 is open.

Since D xHo Hy —> D ®G H is a surjection, the structure map D <8>G H —+ Ho of

the //-space qb\(D) is open.

Second, we have to show that q has an open diagonal D ®g H —> (D ®G H) x#0

(D <8>G H). Since r is an open surjection, so is r x r, and therefore it is enough to

show that (u, v) is open, as in the diagram

D XGo Gy  XHa Hy   -^U   (D XHo Hy) X Hq (D X „0 Hy)

tu=tv rxr

D®GH -►     (D®gH)xHo(d®gH)
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We give a point-set argument to show that (u,v) is open (i.e. we implicitly use

test-spaces and change of base!).

First notice that since D —y Go is etale, the action D xGo Gy —► D is not only

open, but has the much stronger property that whenever Udg is a neighborhood of

dg (de Dx, x' •£* x in Gi), so small that Udg -^* p(Udg) is an isomorphism, then

there are small neighborhoods Vg and Ud of g and d such that do(V) C p(Udg),

and for g' G Vg and d' G Ud with p(d') = dy(g'), d' ■ g' is the unique point x in Udg

with p(x) = do(g').

Now take a point (d G Dx, x' -^* x, y —* qb(x')) of £> Xg0 Gy xHo Hy, and

take sufficiently small neighborhoods Vg C Gi and Wn,W^g)on C Hy.   In fact,

since ^ is full, the map Gi xGo Hy —► (Go xHo Hy) xHo (G0 xHo Hy) is an open

surjection, where in point-set notation: Gi xGo Hy has points (x —* x',y —► <MX))'

(Go xHo Hy) xHo (Go xHo Hy) has points (xy,z —U qb(xy), x2,z -*+ qb(x2)), and

M(g,h) = (x,h,x',qb(g) o h).   (M comes from pulling back the open surjection

Gi —i* Hy x{HoxHo) (Go x Go) of 5.5 along the map

(G0 xHo Hy) xHo (G0 xHo Hy) -* Hy x{H(>xHo) (G0 x G0)

given by (z —U qb(xy), z —^ qb(x2)) <->■ h2hyX.) So by taking W^(9)oh small enough,

we may assume that

(1) Wh x WHg)oh c M(Vg x Wh).

Moreover, choose small neighborhoods Ud, Udg C D (on which p restricts to an

isomorphism) such that Ud-Vg = Udg (this can be done if we take Vg small enough,

by the observation just made about the action D xGo Gy —> D.

We claim that

(u,v)(Ud xGo Vg xHo Wh) > (Udg xHo Wh) xHo (Ud xHo ^(9)h).

Indeed, take a point ((dy, hy), (d2, h2)) oi the right-hand space, say z —U qb(xy) G

Wh, z —^ qb(x2) G W^'g)0h, dy G Udg l~l DXl, d2 eUdfl DX2. Since qb is full, we

can find (after extending the base by some open surjection of toposes!)   a point

xi —y x2 G Vg such that qb(k) o hy = h2 (cf. (1)). But then

(u,v)(d2,k,hy) = ((d2   k,hy),(d2,qb(k)ohy)) = ((dy,hy),(d2,h2)),

because qb(k) o hy = h2 by choice of fc, and d2 • fc is an element of Udg over xy,

and hence cannot be anything else but dy, by the remark above on the action

D xGo Gy - D.
This completes the proof of the theorem.

5.11. Localization. Let G —► H be a map of continuous groupoids, inducing

qb*: (//-spaces) —► (G-spaces), and let E -^ H0 be an //"-space. E gives rise to a

groupoid E = E Xn0 Hy, i.e.

E0 = E,        Ey = ExHoHy^$E

where • is the d0 of E and 7r2 the di. (So this is the "diagram" of E: the objects

of E are elements of E, and the arrows from e' to e are //-maps p(e') —► p(e) such
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that e ■ h = e'.) E is again an open groupoid (cf. 5.1) if H is an open groupoid (in

particular, the action E x#0 Hy —yEis open).

There is a projection -ke'- E —» H which is a map of continuous groupoids.

E h-» E is a functor from //-spaces into continuous groupoids over //.

PROPOSITION,   (a) There is a canonical equivalence

(1) (H-spaces)/E —y (E-spaces),

and the functor (H-spaces) —> (H-spaces)/E given by taking the fibered product over

Ho with E —* Hq coincides—modulo the equivalence (1)—with ix*E.

(b) G —y H induces a map of continuous groupoids qbE: qb* (E) —* E such that

f(E) _**_ E

(2) **•(£) 7TE

G     —*— H

commutes, and the functor qb*/E corresponds to qb*E under the equivalence (1), i.e.

the diagram

(H-spaces)/E -^U (G-spaces)/qb*(E)

(3) [> I
(E-spaces)     —^—►    (qb*(E)-spaces)

commutes, up to canonical isomorphism.

PROOF. Straightforward and omitted.

REMARK. Everything in the preceding proposition can be restricted to etale

spaces, so as to get corresponding statements about localization of BG and BH:

for an etale //-space E we have

(1') BH/E -^ BE;

the square

B(qb*SE)) -^U BE

(2 ) ***(E) irE

BG      -£*-> BH
commutes, and is moreover a pullback of toposes; and the square

BG/qb*(E) -^* BH/E

(30 |^ |,

B(qb*(E))   -£*£-»    BE

of geometric morphisms commutes (compare also 3.5).

Notice that if G —♦ H is open (respectively full), then so is 4>e: <I>*(E) —» E for

any //"-space E. In particular, (J>e\ restricts to a functor B(qb*(E)) —> B(E) if qb is

open and full, by Theorem 5.10.
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5.12. THEOREM. Let G —y H be open and full, as in 5.10. Then for any

map E -2» E' of etale H-spaces, with corresponding map E —► E' of continuous

groupoids over H, the diagram

B(4>*(E))   -^->  BE

B(qb*\E>)) ^K BE'

commutes (up to canonical isomorphism).

PROOF. By replacing G —♦ H by qb*(E) —£■> E', we may without loss assume

that E' = 1; so it is enough to show that

B(qb*jE)) -^ BE

**(<*)* Ta*

BG      —^-» B//

commutes. (In what follows, I will indicate what the points of spaces are and what

the maps do to them, just to remind you which pullback is along which map, etc.)

Take a G-space D = (D -^ Go, )• 4>\(D) is the coequalizer

D xGo Gy xHo Hy^XD xHo Hy^D®GH
V

(recall that the points of the left-hand space are triples (d G DX, x' —+ x, y —+ qb(x)),

andu(d,g,h) = (dg,h), v(d,g,h) = (d,qb(g)oh)). So by stability (cf. 5.7), a*qb\(D)
is the coequalizer

(1) D xGo Gy xGo Hy) xHo E "zf (D xHo Hy) xHo Hy -^ (D ®G H) xHo E
vxG

(points of the left-hand space are of the form (d,g,h,e G Ey), with (d,g,h) as

above). Notice that the action of H on (D ®G H) x#0 E is defined by acting on
h k

both the H- and the /^-coordinate, i.e. for d G Dx, y —* qb(x), e G Ey, y' —> y, we

have ([d,h],e) ■ k = ([d,hk],e ■ fc).

The other way round, qb*(a)*(D) is the qb*(E)-space DxGo(G0xHoE) = DxHoE

(points are pairs (d G Dx,e G E^x^)), and hence (4>e)\4>*(a)*(D) is the coequalizer

<P*(a)*(D)®^}Eoi

(2) (D xGo Go xHo E) x0^)q J>*jE)y xEo Ey zt D xGo (Gq xHo E) xEo Ey.

Unwinding the definitions, it is not difficult to check that the coequalizer of (2) is

isomorphic to the coequalizer (3)

(3) D xGo E xGo Gy xHo Hy=tD xHo E xHo Hy 4, qb*(a)*(D) ®<f^E) E
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(to remind you of where we are: points of the left-hand space in (3) are quadruples

(d G Dx,e G E^x),x' -^* x, y —y </>(x')), and u sends this to (d- g, e ■ qb(g), h) while

v sends it to (d, e, qb(g) o h).

But (1) and (3) are the same under the isomorphisms a and 0,

(1): (DxGoGy xGoHy)xHoEu-=iDxHoHy xHoE
vxE

Ja 0

(3): D xGo E xGo Gy xGo H1Z^D xHo E xHo Hy
v

where a and 0 are defined by a(d,e,g,h) = (d,g,h,eqb(g)h), 0(d,e,h) = (d,h,e-h).

Then 0 o u = (u x E) o a, 0 o v = (v x E) o a, so (1) and (3) have isomorphic

coequalizers.

This proves the theorem.

5.13. PROPOSITION.   Let G —► H be a map of continuous groupoids, and
rh fh*

suppose qb is open and fully faithful (5.5). Then the composite BG —'■* BH —► BG

is canonically isomorphic to the identity on BG.

PROOF. Take an etale G-space (D —► Go, •)• 4>\(D) is the coequalizer

D xGo Gy XHo Hy^DXHoHy^D®GH

over Hq. This coequalizer is stable under pullback along Go —* H0 (5.7), so qb*qb\(D)

is the coequalizer

(D xGo Gy xHo Hy) xHo Gq   zt° D xHo Hy xHo G0 -> (D®G H) xHo Go
vxGo

(so points of the left-hand space are quadruples (d G Dx,x' —* x, qb(x") —> qb(x'),

x")), If qb is fully faithful, this is isomorphic to the coequalizer of

•xd
£»xGoGiXGoGi   zt   DxGoGy.

Dxm

But

D xGa Gy xGo Gy   Xzt' D xGo Gi A D
Dxm

is a split coequalizer, for any G-space D.

5.14. PROPOSITION. Let G —► H be a map of continuous groupoids, and

suppose qb is open and full. Then qb\ induces an isomorphism of subobject lattices

SubsG(.E) ^U Subs//(4>\E) for each etale G-space E.

PROOF, (a) Let us first note that qb\ maps monos to monos: Take S -^+ E in

BG, and consider the diagram

S XGo Gy XHq Hy    -T   SXHoHy    —^   S ®G H

I I h(u)
E xGo Gy xHo Hy   -f  E XHo Hy   —^  E ®G H
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the rows of which are stable coequalizers (cf. 5.7). We use change of base and

"point-set language". Suppose given points x,x' of the space 5 ®G H (in any

extension of the base topos 9 —y Sf) such that <^i(u)(x) = qb\(u)(x'). Since q is

an open surjection, we can find representing points (s, h), (s1, h') G S x#0 Hy with

[s, h] = q(s, h) = x, [s1, h'\ = x' (in some further base extension 9' where 9' —> 9

is an open surjection). Then p(u(s), h) = p(u(s'), h'), so (by going to an 9" where

9" —* 9' is an open surjection) there is an x —+ x' such that u(s') ■ g = u(s) and

qb(g)oh = h' (here we use that ExGo Gy xHo Hy —► (E xHo Hy) xHo (ExHo Hy) is

open, cf. 5.10). Since u is mono, s'g = s, hence x = [s, h] = [s',h'] = x' in Sf ®G H.

(This latter identity holds in 9", but since 9" —» 9 is an open surjection, it follows

that it must hold in 9, the base over which x and x' were originally defined). This

proves that qb\ (x) is a monomorphism of spaces.

(b) Next, we verify that SubsG(/^) +± Subsh(<I>\E) are mutually inverse func-

tors, where for A C qb\(E), qb(A) is defined as the pullback along the unit of the

adjunction qb\ H qb*:

~ql(A) -y  E

I 1'
A    -► <fr*<t».(E).

For S C E and A C qb\(E), the inclusions S C qbqb\(S) and qb\qb(A) c A are

obvious. To prove the inclusions qbqbt(S) C 5 and A C qb\qb(A) we use point-set

arguments as in (a). This can be done since everything in sight is stable. Leaving

the subsequent base extensions of the base topos Sf implicit, the proof is as follows.

For ~qbqb\(S) C S, take e G 4><j>\(S)x C Ex, i.e. [e,s(qb(x))\ G <p\(S)<p(x)> <t>\(s)<l>(x) C

<t>\(E)<t,(x) = (E ®G //")tf>(x) (recall that Go -^ Gi "sends x to the indentity at x").

This means that there is a pair [t,h] G S ®G H with [e, s(qb(x))] = [t,h], say with

qb(x) —* qb(x') and t G Sx>. Then there is an x' -^ x such that t = e ■ g and

qb(g) oh = s(qb(x)). So e = t ■ g'1 G Sx since t G Sx>. Thus 4><p\(S) C S.

For A c qb\qb(A), take a G Ay C qb\(E)y over a point j/ of Z/o.  So a is a class

a = [eo,no]i where eo G Ex and j/ —^ <^>(x). Now 0(A)X consists of points e G Ex

such that [e,s(qb(x))} eA^), so e0 G </>(A)n because [eo,s(0(x))] = ah^1 G A^^).

Then0i(eo) = [e0 ■ s(qb(x))} G 0!0(A)0(:r), i.e. ah^1 e qb^(A)^x). So a G qbuf>(A)y.

This shows A C qbqb\(A).

We now reformulate the preceding results in terms of properties of the geometric

morphism BG -t BH.

5.15.  SUMMARY.   Let G —> H be a continuous map of groupoids, with induced

geometric morphism BG-► BH.

(i) // qbo: Go —* Ho is open, then BG —► BH is open.

(ii) // qb is essentially surjective then Bqb is surjective.

(iii) 7/ qb is essentially surjective and full then Bqb is connected.

(iv) // qb is open and full, then BG-► BH is atomic.
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(v) // qb is open, fully faithful and essentially surjective, then BG-► BH is an

equivalence of toposes.

PROOF. For (i)-(iii) see 5.9. For (iv), notice that Bqb*: BH -> BG has a BH-

indexed left adjoint by 5.11 (so Bqb is locally connected). Bqb* also preserves the

subobject classifier: writing fiG,fi# for the subobject classifiers of BG and BH,

we have for E G BG,

E^UG

AcE   in BG
Scgb\(E)    in BH        (by 5.14)

UE)^Uh
E^(Bqb)*(nH)

so nG S (Bqb)*(nH). Finally, (v) follows from (iii) and 5.13.

6. The Stability Theorem. Recall that if G is a continuous groupoid in

a topos 9, B(9,G) denotes the ig'-topos of etale G-spaces over (or "in") 9. If

fF -£+ 9 is a geometric morphism, we obtain a continuous groupoid p#(G) in

SF (see 1.5). The aim of this section is to show there is a canonical equivalence

of toposes B(^F,p#(G)) —y^Fxg B(9,G) for any (open!, cf. 5.1) continuous

groupoid G in 9.

6.1. Generators for BG. Let G be a continuous groupoid (we still tacitly assume

that do and di: Gi zt Go are open maps). The aim is to find a more manageable

set of generators for BG than the one coming from the proof of the existence of

colimits (cf. 2.1).

Let E = (E S-y Go, ■) be an etale G-space, and let U —* E be a section of p over

some U G of (Go). Let Nt C Gi be the subspace defined by the pullback

Gynd^'U) ——y E

\ 1
Nt -► U

where i is the composition Gi D df^Z/) —'-?—* E xGo Gy -^ E (i.e. "Nt = {x -^

y G Gi|t/ € U and t(y) • g = «(*)}"). Then

(i) Nt is an open subspace of Gy, and do(Nt),dy(Nt) C U,

(ii) Nt contains all identities, and is closed under inverse and composition

(in point-set notation: x G U => s(x) G Nt, g G Nt =** g_1 G Nt, and g,h G Nt =>

go h G Nt when dog = dyh).
Now consider the pullback of spaces

r>   ~      r-     m(lxr)   r,
"1  XGo bi    -►   Oj

! !

Rt  -►   Nt

where Gi -^y Gy is the inverse, and Gi xGo Gi is the pullback of Gi —^+ G0 <— Gy

(so i?t = {(x -2* w,x —> <r|gn_1 G A7*}').   i?t defines an equivalence relation on
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Gi n dy\U) over G0 (via Gy -^ G0), and we write Gi n dy\U)/Nt for the

quotient, i.e. there is a coequalizer of spaces over Go:

Rt  -1 GyHdy^U) -► Gyr\dyl(U)/Nt

do \. .^ do

X G0^

Notice that this coequalizer (1) is stable, because Rt —* Gy xGo Gy is open, and

Gi fl dyl(U) is an open space over Go (so we apply the last fact of 1.3 to spaces

over Go).

We claim that Gi C[dyl(U)/Nt is an etale G-space. Composition Gi xGo Gy -^»

Gy induces an action (Gy n dr^f/)/^) xGo Gy -» Gi C\dyl(U)/Nt (in point-

set notation:   [g] ■ h = [gh] for a class [g] G Gi l~l d1~1(U)/Nt, g G Gy,dy(g) G

U). Moreover, Gi C\dy1(U)/Nt —^ Go is open because Gi -A Go is open (by

assumption 5.1), while the diagonal over Go

Gyr\dy\U)/Nt - (Gy^dy\U)/Nt) XGo (GyHdy'W/Nt)

is open, as follows by considering the square

Rt ^Eiz^ Gyndy'^X^Gyndy^U)

Gyndyl(U)/Nt -► (Gindr1(c;)/^t)xGo(G1ndr1(/7)/A/t).

Thus Gy n dyl(U)/Nt is an object of BG.

Furthermore, the section t: U —y E induces a map of etale G-spaces i, defined

by factoring the map Gi fl dj~1(/7) —♦ E, (g i-+ t(dyg) ■ g) through the coequalizer

Gyr\dy-l(U)/Nt -1—* E

(2) N. /

^G0^

t contains the section t, in the sense that there is a commutative diagram

Gy^d\x(U)/Nt —*—> E

X/7

(\s\ stands for the composite U -^ Gy n d\~x(U) -»■ Gx n df 1(U)/Nt.)

We conclude that the etale G-spaces of the form Gi n dyl(U)/Nt —^ Go (with

G-action defined by composition) generate BG.

DEFINITION. Let SG be the full subcategory of BG whose objects are etale G-

spaces of the form Gi f\dyl(U)/N, where U C Go and N C Gy are open subspaces

such that d0(N),dy(N) C U, and s(U) C A", m(N xGo N) C A"), A7"1 C A" (cf. (i),
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(ii) above). If we define the covering families of SG to be the epimorphic families

of BG, then SG is a site for BG, i.e. there is a canonical equivalence

BG -=♦ Sh(SG).

Notation. We write [G,U,N] for the G-space (Gy ndyl(U)/N -^ G0,-), where

U and N are as in the preceding definition.

For later use, we note the following lemma.

6.2. LEMMA. Let G —► H be a map of continuous groupoids, with correspond-

ing geometric morphism Bqb: BG —+ BH, and let SG, Sk be the sites for BG and

BH as just defined. If qb is a fibration in the sense that Gy —       > Go x h0 Hy is

an open surjection, then (Bqb)* maps Sh into SG; in fact for [H,V, N] G Sh,

(Bqb)*[H,V,N] = [G^HVUTH^)].

PROOF. Take V C G0, N C Gy such that [H,V,N] = Hy ndy1(V)/N is an

object of the site SH, and write RN C (HyHd^^/N) xHo (Hytld^^/N) for

the equivalence relation corresponding to N. Note that Rn is an open sublocale,

and that R^-i^n) — (<t>x<f>)~1(RN)- Since quotients by an open equivalence relation

are stable (1.3), we find that

(Bqb)*[H,V,N} = G0 xHo (Hy nd^W/Rrf)

= (Go xHo Hy ndy~1(V))/(G0 xHo Rn)-

Clearly, qb induces a map Gx n dyl<j>Ql(V) -^l G0 xHo (Hy n dyl(V)), which

passes to the quotient to give a map

Gi ndrVo1(V)/,/V.(,v) A Go x„0 (H1ndy'1(V))/(Go xHo Rn).

Also, since by assumption

Gi ndrVr-ry) ^^ g0 xHo (Hyndy\v))

is an open surjection, it is a coequalizer of its kernelpair K >—► (GyCidy1^* (V)) xGo

(Gi nd1"V0"1(V)). But K c R<t>-i(N), so we obtain a factorization

i- --'-'"'

Gytldy-^oHVytPy-^RN)^'

where n is the projection. It is easy to see that 0 passes to the quotient to give a

map

Go xHo H1ndy1(V)/(G0 xHo Rn) -^ Gy^dy-lqb^(V)lqby-l(RN),

and that a and 0 are mutually inverse maps of G-spaces.

6.3. Morphisms in SG. It is clear that for any etale G-space E and any object

[G, U, N] of SG, there is a bijective correspondence between G-maps [G, U,N] —> E

and sections U —> E with Nt C N

U±E,NcNt
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[s] _i
given t, t = to [s], where U —► Gi fl dy (U)/N is as in 6.1; and given t, the map

i is defined as the projection Gi D df^C/j/A/ -> Gy n dyl(U)/Nt followed by the

map t as described in 6.1(2).

In particular, the maps [G, U, N] —* [G, V, M] of SG correspond to sections

t of [G, V, M] over U such that (in point-set notation:) for each x —► y G N,

t(y) ■ h = t(x) in [G,V,M\.

6.4. Covers in SG. Let [G,U,N] —► [G,V,Af] be a map in SG; i.e. / is an

etale map Gi D dl~1(U)/N —► Gx n d1~1(V)/M of G-spaces, induced by a section

U —y Gyf] d\~1(V)/M say. Then N C Nt, and there is a factorization

Gind7-(tf)/W  —-—» GyC\dyl(V)/M

Gynd^(U)/Nt

tt is the projection onto the quotient, and u is mono. We also write Ker(/) for Nt.

Now suppose {[G,Ui,Nt] —^ [G, V, M]}t is a cover in SG, i.e. an epimorphic

family of etale G-spaces. Factor each fi as

[G,Ui,Ni] 3 [G,t/i,Ker(/i)] 2i [G.V.M].

Each tt, is a singleton covering family in SG.

Consider the pullback

Gyndyl(U)/l\er(fi) ^^-^ Gyndy}(V)/M

(1) r.[ |(3l

V   C-^   t/

The Vi form an open cover of V, inducing a cover

(2) {Gy ndy\V)/(M\Vt) &> GyndyX(V)/M}

in SG, where M|Vi is the restriction of M to Vt ("M|V, = {x -^ ?/|9 G M,x,y G

Vi}"), and ni is induced by the identity-section [s]: Vi —► Gi C\dy 1(V)/M. For each

*', the triangle

Gindf^VO/Ke^/i) <^^-^ Gyndyl(V)/M

U r-^^V'

Gtnd^l{Vi)/M\ViC^

commutes, i.e. the cover {rn} refines the cover {ui}.

We conclude that the Grothendieck topology on SG is generated by (is the

smallest one containing) the covers of the following two types

(1) projections [G,U,N] -» [G,Z7,M], N CM,

(2) covers {[G,Ui,M\Ui] >-+ [G, U, M))i coming from open covers {Ui} of U in

G0.
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Notice that this is a stable system, i.e. the pullback of a cover of type (1) or (2)

along a map [G,V, L] —+ [V,U,M] in SG is again of type (1) or (2).

6.5. Bases for G. Let 38q be a basis for Go, 38y a basis for Gi. We say that the

pair 38 = (38o,38y) is a basis for G if both are closed under finite meets and

(i) if S0 e^b then dQ1(B0),dy1(Bo) G ̂ y,

(ii) if fli e^i then s_1(Bi) e3S0,

(iii) 38y is closed under "closure for composition", i.e. if B G 38y then mB G 38y

(here for U G cf(Gy), U+ = m(U xGo U)—recall that Gi xGo Gy -^ Gy is open,

cf. 5.1—and f/(°) = U, £/<n+1) = U^ + , mU = \JnU™). Then clearly, given any

object [G, U, N] of SG, there is a canonical map [G, B0,By] —> [G,f/, A7"] whenever
Is]

B0 CU and By C N (the map induced by the section 50 -» lV -^ [G, //, A7]), and

these form a cover in SG, {[G, B0, By] —» [G, /7, A7]}b0b1 , indexed by all Bo G 38q

with B0 CU and Bx G ̂ i with By C N.

Consequently by the comparison lemma (SGA 4, 111.4), the full subcategory of

SG consisting of only those objects [G, Bq, By], B0 G 38q, By G 38y, for some basis

(3So,SS8y) for G, equipped with the Grothendieck topology induced from SG, still

form a site for BG.

It is clear that if 38 = (3§o,38y) is a basis for G, then for any geometric morphism

9 —y SF, the bases (presentations, cf. 1.1) p*(38q) for p*(Gq) and p*(38y) for

p*(Gy) still satisfy conditions (i)-(iii), and thus define a basis p*(38) for p#(G).

6.6. LEMMA, (a) Let E -^-y X and F —* Y be etale maps of (generalized)

spaces and let U —> E x F be a section of px q over an open U C X x Y. Then

there exists a cover U = \fi(V% x W%) such that t]Vi x Wi is of the form ri x Si for

sections Vt ^E,WZ-^ F.
pxY

(b) In particular, taking q = identity, sections of E xY-► X x Y locally do

not depend on the Y -variable.

PROOF. Obvious.

6.7. STABILITY THEOREM. Let ,F -^» 9 be a geometric morphism, and let

G be an open continuous groupoid in 9. Then the canonical geometric morphism

B(F,p*(G)) -^ F Xg B(9,G) is an equivalence of toposes.

PROOF. By arguing constructively in 9, it is enough to consider the case 9 =

Sets. We may also assume that !F is sheaves on a space Y, because for any SF there

is an open surjection Sh(y) -^* !F, and if we prove the theorem for the composite

poq, then it will follow for p since equivalences of toposes are reflected down open

surjections; i.e. if
2f -► Sf

¥ ->Sf

is a pullback, °y —> Sf is an open surjection and 2f —» "^ is an equivalence, then

Sf —> SF is also an equivalence (see Moerdijk (to appear), lemma in 2.4).

Let 38 = (38o,38y) be the maximal basis for 9,38i = tf(Gi), with corresponding

site SG for BG = B(9,G). By applying p* to the category SG and to the covers
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of SG we obtain a site S = p*(SG) in F (or rather, a category with a stable

generating system for the topology) for F x% B(9,G).

On the other hand, p*(38o), P*(38y) give a basis for p*(G) as noted in 6.5, with

a corresponding site T = Sp.(.^) C Sp#(G) for B(F,p#G) in F.
p

We will compare these two sites S and T in SF by an obvious functor S —► T

induced by p*.
(i) The objects of S G F are (at least locally) the same as those of SG G 9 (i.e.

S0 = p*(SGo), the constant sheaf), and P sends an object Gi n d1~1(V)/N of SG

to the corresponding object p*(G)y fl dy1 (p*(V))/p*(N). But observe that the

quotient Gi fl d1~1(V)/N is stable, i.e. we have

p*(G)yndy-1(P*(V))/p#(N) = p*(Gyndy1(V)/N),

so S and T have essentially the same objects.

(ii) A map Gy fl dy1(V)/N -» Gi fl dyl(W)/M in S comes (locally) from a

section V —> Gy fl d1~1(W)/M (cf. 6.3), and this gives a section

p*(V) -y p*(Gy fl dy1(W)/M) = p*(G)y fl dylp*(W)/p*(M),

and hence a map

p*(G)yndy1(p*V)/p*(M) ^P*(G)10dy1p*(W)/p*(M)

(this describes P on maps). There are many more maps p*(Gy fl d1~1(V)/N) -^*

p#(Gi ndy1(W)/M) in T than there are maps Gi Ddyl(V)/M — GiHdi1(W)fM
in S (i.e. essentially, in SG). However, if u is such a map in T corresponding to a

section p*(V) -^ p#(Gi r\d1~1(W))/p*(M) oip*(d0), then it is true internally (in

F~) that there exists an open cover {Ui}i€j of p*(V) such that t\Ui is of the form

p*(ri) for a section r< of Gi fl dy1(W)/M —^+ Go in 9—this follows from Lemma

6.6(b). Moreover p*(38q) gives a presentation of the locale p#(Go), so the covers of

p*(V) are generated by families of the form {p*(Vj)}j^v-(j), where {Vj}j€j is a

cover of V by elements of 380 in 9. But any such cover V = \fVj in G0 gives a cover

ofG1fld]"1(V)/MinthesiteSGin^: {G,ndf 1(Vl)/(M\VJ) ^ Gifld^VVM^
(cf. 6.4). So what we conclude is that the composite top#(r)j) is of the form p&(rj).

In other words, S —► T is locally full in the sense that for any map PS A PS' in T

there is a cover {Sj —f-y S}j in S such that uoP(aj) = P(v3) for some Vj: Sj —> 5'

in S.
(iii) It remains to compare the covers in S and in T. Clearly P preserves covers

(cf. 6.4).   P also reflects covers, since every cover {PSi —'-* PS}iei in T has a
Pw

refinement of the form {PSj --* PS}j€j where {w3} is a cover in S. To see this,

we may first assume that Vi = P(fi), by (ii). Now factor /, = u, o 7^ as in 6.4,

and construct the pullback 6.4(1). Clearly 7Ti is a cover in S. Moreover the Ui give

a family {Vi —> V}iG/ such that {p#(Vt)}i is a cover of p#(V) in p*(Go). This

does not necessarily mean that {Vi} is a cover of V (in 9), but it certainly implies

that the induced family {[p#G1,p#(Vi),p#(Ar|Vi)] -> [p#(Gi),p#(V),p#(A/)]} is

a cover in S, since the cover {p#(Vi)} of p#(V) must at least be generated from

open covers in G0 (in 9), essentially by definition of the space p*(Gq) (cf. 1.5).

It now follows by the Comparison Lemma (SGA 4, III) that S and T give

equivalent toposes of sheaves, and the proof of Theorem 6.7 is complete.
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6.8. THEOREM. Let {Gl}i be a family of open continuous groupoids in a topos

9. Then there is an equivalence of 9-toposes \~\g B(9,G%) —y B(9,\~[Gl) (on

the left, Y\g is the (possibly infinite) fibered product over 9; on the right, \~[ is the

obvious direct product of continuous groupoids).

PROOF. The proof is similar to that of 5.7, in fact easier. I will only say a

few words about the case of a binary product G1 x G2. If S8l = (38G%,38y) is a

basis for Gl (i = 1,2), then 38 = (38yj x 3802,38^ x 38y2) is a basis for G1 x G2

(where 38* x 38? = {B1 x B2\B3 G 38?}), and there is a comparison functor

S.^i x S.^2 —y S,^> which is essentially the identity on objects, locally full by 6.6(a),

and preserves and reflects covers because any cover of a product of spaces B1 x B2

is generated from covers in each coordinate separately (by the very definition of the

product of spaces).

As a corollary of 6.7 and 6.8, we obtain some stable coequalizers of spaces (see

also 5.6).

6.9. COROLLARY.   (1) Let G be an open groupoid over a space T, and let

do r>

Gy zt G0 -^ nrG
dx

be a coequalizer of spaces (over T).   Then Yxt Gy zt Yxt Gq —> Yxt tt(G) is

again a coequalizer, for any space Y over T.

(2) Let G and H be continuous groupoids over a space T, and let

Gy 4 Go -^ ttG    and   Hy 4 H0 -^ ttH
d\ d,

be coequalizers of spaces over T.  Then

Gy xT Hy zt G0 xT Ho — rr(G) xT tt(H)

is again a coequalizer.

PROOF. G is a continuous groupoid in the topos Sh(T), and 7r(G) is the reflection

of BG -y Sh(T) into spaces over T (i.e. spaces in Sh(T)). So (1) follows from 6.7

and the fact that the spatial reflection is preserved by pullback (cf. 1.6). (2) follows

similarly from 6.8 and the fact that the spatial reflection commutes with products

(1.6).
Just like 6.8, 6.9(2) holds for arbitrary (small) products, and not just for binary

ones.

7. Toposes as a localization of continuous groupoids. The aim of this sec-

tion is to obtain the category of toposes (over a given base topos Sf) as a category

of fractions from the category of continuous groupoids. The category of toposes

here could mean the 2-category with geometric morphisms as 1-cells and natural

isomorphisms as 2-cells. This 2-categorical version requires a calculus of fractions

for 2-categories. Here, however, one looses oneself in an orgy of coherence condi-

tions involved in pseudofunctors, pseudo-natural transformations, etc. Therefore,

I will only present a version for ordinary categories, namely the category [toposes]

of toposes and isomorphism classes of geometric morphisms (under natural iso-

morphism of inverse image functors), and a category of continuous groupoids and

isomorphism classes of continuous homomorphisms, as in the following definition.
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<t>
7.1. DEFINITION.   Let G zt H be maps of continuous groupoids.   A map

V

(2-cell) a: qb => xp is a continuous map of spaces Go —► Hy such that doc* = <f>o,

dya = ipo, and the diagram (1) commutes:

(i>,ad0)

(1) Gi       =t      HyXHoHy^Hy.
(<*dx,<t>)

Any 2-cell is an isomorphism; qb and tp: G —y H are isomorphic if there exists a

2-cell qb=> xp. Hpm(G, H) denotes the category of maps G —► H and 2-cells between

them.

7.2. Etale-complete groupoids. A continuous groupoid G is etale-complete if

Sh(Gi) —^-> Sh(Go)

(1) |<fe /-g^|p

Sh(Go) -►     BG
p

is a pullback of toposes. Here p is the canonical map (p* is the forgetful functor

(E —yG,-)y-yE), and pG: d*yp* => d*yp* is the natural transformation correspond-

ing to the action of G on etale-spaces.

If x is a point of Go, let evx: BG —► Sf denote the functor "evaluate at x",

which takes the fiber at x: evx(E) = Ex. Using the Stability Theorem (6.7),

one can describe etale-completeness as follows: G is etale-complete iff for any two

points x,y G Go, any natural isomorphism a: evx => evj, is induced by a unique

point y SL, x of Gy (here point means: point in any base extension).

If G is an arbitrary continuous groupoid, there is an etale-completion G as-

sociated to it, defined by Go = Go and Gi is given by the pullback Sh(Gi) =

Sh(Go) xBG Sh(Go). (So in point-set language, for x,y G Go the maps x —» y in

Gi are the natural isomorphisms evj, =► evx: BG -* Sf.) G is etale-complete iff G

is isomorphic to G. Note that G is open if G is (cf. 5.1).

There is a canonical map G —► G of continuous groupoids, which is universal

in the sense that for any etale-complete groupoid H, any G —► H has a unique

extension qb to G

G —5-+ G

H
lb

Moreover, if G —► H is another map with unique extension tp, there is a natural

1-1 correspondence between 2-cells qb => ip and 2-cells qb => xp. (More precisely, if

a: Gq —+ Hy is a 2-cell from qb to xp, i.e. the diagram 7.1(1) commutes, then the

same a also makes (1) commute with Gi replaced by Gi). Thus, n induces an

isomorphism of categories Hpm(G, //) -* Hom(G, //").

7.3. LEMMA. LetF —* 9 be a geometric morphism, and let G be a continuous

groupoid in 9 . If G is etale-complete, then so is p*(G).

PROOF. Obvious from the Definition and the Stability Theorem (6.7).
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7.4. Etale-complete groups. At least in the case of a continuous group G (i.e.

Go = 1, Gi = G), the etale completion is easy to describe explicitly. Let S be the

system of open subgroups of G, partially ordered by inclusion. If U C V in S, there

is a canonical projection map of discrete spaces (of right G-sets) G/U —» G/V.

Here G/U is defined as the coequalizer Ru zt G -^-> G/U, where Ru c G x G is

given by the pullback

Be/ -► GxG

Xy~l

U   -►     G

(so this construction of G/U is a special case of the construction of Gi C\d1~1(V)/N

from §6). Taking the inverse limit of this system of projections, one obtains a

prodiscrete space

MG = lim G/U.
f/es

We claim that MG is a monoid object in the category of spaces. The neutral

element 1 -^ MG is defined by iru o e = 1 S-y G -^-» G/U, where MG -^-> G/U is

the projection. Multiplication p: MG x MG —> MG (also denoted by •), is defined

as follows: Write G/U x MG = \].KeG/u{K} x MG (G/U is discrete), and let

mu: G/U x MG —y G/U be the map with mu\{K} x MG equal to the composite

{K} x MG -^ G/K -i G/U, where K = ^(AT)"1 • 9r/(/T) C G, and / is the
function (of discrete sets!) defined by the commutative diagram

q„l(K) xG —'—*    G

G/K        —-—► G/U.

A more intelligible definition of pG can be given in point-set language: points of

MG "are" systems x = (Uxu)ues of cosets, and p is simply defined by

(1) p(x,y)u = (x-y)u = Uxuy<x-^uxvY

REMARK. It is important to note that (1) may actually be taken as a definition,

by the usual techniques of change of base: We have to define a natural (in X)

function px: Cts(X, MG x MG) —> Cts(X, MG). By working in Sh(X), it is enough

to give an explicit definition for the case X = 1. So take two points x and y of

MG. These are sequences of elements of G/U, U G S. By changing the base

along an open surjection (pulling back along G —* G/U), every point 1 —► G/U

can be represented as an actual coset Uxy for a point xy of G. (Going to a base

extension does not affect MG, since (i) the quotient G/U is stable, and (ii) it is

enough to consider a cofinal system of open subgroups.) By taking the filtered

inverse limit over S of all these base extensions, we obtain another open surjection

Sh(A) -> Sf (Moerdijk (1986), Theorem 5.1(h)), such that in Sh(A), x is given as

a sequence of cosets (Uxu)ues for points xy G G; and similarly we may choose y

to be represented as (Uyu)ues. Then (x ■ y)u = Uxuy(x->uXu) as m (1) defines a

point of MG inside Sh(A), i.e. a map A —> MG.  We have to show that it factors
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through Sh(A), i.e. a map A —► Sf and gives an actual point 1 —► MG in SF. But

since Sh(A) —> Sf is an open surjection, and open surjections are coequalizers of

their kernel pairs, this precisely means that the definition (1) is independent of the

points xu, yu chosen to represent the cosets Uxu, Uyu, which is obvious.

Using such change of base techniques, it is easy to check that MG is a well-

defined monoid, and that the map G -^+ MG given by ■Ku ° "" = qu '■ G —► G/U, is a

continuous homomorphism. Now let ^F(MG) be the subspace of invertible elements

of MG. Then this is precisely the etale completion of G: G = S(MG).

7.5. Essential equivalences. Call a map G —► H an essential equivalence if qb is

open, essentially surjective, and fully faithful (cf. 5.5; note that if qb is fully faithful,

qby: Gy —y Hy is open when qb0: Go -* H0 is). Let E denote the class of essential

equivalences.

Clearly E is closed under composition. Moreover, if

P —*-. H

(1) » <fi

K St-, G

is a lax pullback-square of continuous groupoids and qb is an essential equivalence,

then so is u. The laxpullback (1) is the groupoid P defined by Bo = Hq xGo Gy xGo

Ko (i.e. "the space of triples (y,g,z), y G H0, z G K0, g: qb(y) —y xp(z) in Gi"), and

Bi is the equalizer

Bl >->• Hy X(HoxHo) (Po x B0) X(KoxKo) %1 ^ Gi
m,(-X3,<piri)

(i.e. "the maps (y, g,z) —► (y',g',z') in B are pairs y —+ y', z —y z' such that

xp(k) o g = g' o qb(h)"). Finally, observe that if G zt H are maps of continuous

groupoids, and H -^* K is an essential equivalence, then any 2-cell a: eqb =>■ exp (cf.

7.2) factors through e—i.e. there is a 2-cell 0: qb => xp with e ■ 0 = a.

Let CG be the category of open (5.1) continuous groupoids and isomorphism

classes of maps (cf. 7.2). Let E also stand for the family of morphisms in CG

which come from essential equivalences. The properties of E as just pointed out

show that E C CG admits a calculus of right fractions (see Gabriel and Zisman

(1967)).
Let ECG be the full subcategory of CG whose objects are etale-complete con-

tinuous groupoids. Clearly, E also admits a calculus of right fractions on ECG (by

7.3, the inclusion ECG «-» CG has a left adjoint).

7.6. LEMMA. Let C —+ D be a functor, and E c C a class of morphisms

admitting a right calculus of fractions. Suppose

(i) F is surjective on objects, and faithful,

(ii) F sends morphisms from E to isomorphisms,
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(iii) for any map FC —» FC there is a commutative diagram

FC  —g—* FC

BGo

with a G E.

Then the functor C[E_1] —* D induced by F (by (ii)) is an equivalence of cate-

gories.

PROOF. Since E admits a calculus of right fractions, we can explicitly construct

C[E_1] as in Gabriel and Zisman (1967). F then induces a functor F': C[E_1] -►

D and the conditions of the lemma simply state that F' is surjective on objects,

and fully faithful.

Note that "B is faithful" can be replaced by the weaker condition that whenever

/, g are parallel arrows in C with Ff = Fg, then there is a a G E such that fa = ga.

7.7. THEOREM. The functor (continuous groupoids) —► (toposes) induces an

equivalence of categories ECG\E~l] —* [toposes].

PROOF. The descent theorem of Joyal and Tierney (Joyal-Tierney (1984);

see also Moerdijk (1985)) implies that the restriction of B to etale complete

groupoids is essentially surjective.    Moreover, B restricts to a faithful functor

ECG —► [toposes]. In fact, if G zt H are maps of continuous groupoids and H

is etale complete, then any 2-isomorphism (Bqb)* => (Bxp)*: BH —► BG comes

from a 2-cell 0: xp => qb as in 7.2, as is immediate from etale completeness. By 7.6

it therefore suffices to show that for any geometric morphism BG —» BH there

exists a diagram G *— K —> H of continuous groupoids such that e is an essential

equivalence, and

BG ——y BH

BK

commutes (up to natural isomorphism). Construct the pullback square

F -*s-►Sh(flo)

(2) eo a^   8

Sh(Go) —^ BG —f—^>    BH

of toposes. F must be of the form Sh(Ao) for a unique space Kq. The points of

Ko can be thought of as triples (x,a, y) where x G Go, y E. Hq are points, and

a: e\y —y evx of* is a natural isomorphism. Notice that eo: K0 —► Go is an open

surjection since Sh(Bo) —> BH is.

Write a: qqb0 5- /pe0 for the 2-isomorphism up to which (2) commutes.
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The space Ky is similarly defined as the pullback of toposes

Sh(Ky)   -^-r   Sh(Hy)

(3) e, qd0

Sh(Gi) -^-* BG —^    BH

with a natural isomorphism 0: qdoftH =*■ fpdorrG. So the points of Ky can be

thought of as triples (g, h, 0), where x -£» x' is a point of Gi, w —► ?/' a point of Bi,

and /?: evy —♦ evx /* is a natural isomorphism.
d0

There are canonical maps Ky zt K0 resulting from the universal properties of
di

(2) and (3). In fact, do and di are most easily described by using test spaces and

stability (6.7): Given a map T —y Ky, this can be thought of (inside Sh(T)) as

a triple t = (g, h, 0) of points as above, and do* = (x, y, 0) defines a point of Ko

in Sh(T), i.e. a map T -^ K0. Similarly, dy(g,h,0) = (ar\j/,ff_1 o 0 o h). In

other words, if we allow change of base, then given two points (x,y, a), (x',y',a')

of Ko, the maps (x, y, a) —» (x', y', a') in Ky are pairs (g, h) such that x -^ x' G G,

y —* y' G H, and the diagram of natural transformations

evB   -y evxf*

■h Ts

evy> -y evx' /

commutes. A" is a groupoid in the obvious way, and £y,qby give maps of continuous

groupoids K -^ G, K -t H.

Ii G is etale complete, it easily follows from the construction that

Ky   ̂ ±1   Kq X Kq

£l £oX£o

Gl i££^il GoxGo

is a pullback. Thus K —■» G is an essential equivalence.

Notice that K is indeed an object of ECG if G and H are.   First of all, the

pullback (3) can be constructed stepwise

Ky = Gy XGo K0 XHo Hy   -►   Kq Xh0 Hy   -►     Hy

[ 1 I
(4) GyXGoK0-►        Kq        -►   Bo

i i 1
Gi    -►        G0 -► BG -► BH

and all the vertical maps are open surjections. It follows that do and di: Ky zt Ao

are open maps. Moreover, since K —+ G is fully faithful and G is etale complete,

so is K.
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Finally, it remains to show that the diagram

BK

V, V
BG —^—► BB

commutes, up to isomorphism. Write Sh(A0) —+ BK for the canonical geometric

morphism. Then a: qqb0 =>• fp£o gives a natural isomorphism v: Bqbot => foBeot.

For B G BB, the component ivB is a priori just a map of spaces <j>*(E) —► e*f*(E)

over B"o- However, it easily follows from the construction of B"i (from the naturality

of 0) that it is in fact a map of A"-spaces, i.e. vh — t*pn for some (unique) pn-

This completes the proof of 7.7.

There are several variants, such as the following analogue of 7.7 for open SF-

toposes and open maps.

7.8. Open toposes. Let (tf-toposes) denote the category of open ^-toposes and

open geometric morphisms (over Sf), and [i^-toposes] the corresponding category

with isomorphism classes of open geometric morphisms as maps. Let cf-ECG be

the subcategory of ECG given by open maps of continuous groupoids (5.5). It can

be shown that B: cf-ECG —> [(^-toposes] induces an equivalence cf-ECG\E~l] ^

[^-toposes]. The proof is completely analogous to that of 7.7.
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