The classifying topos of a continuous groupoid. I
HTML articles powered by AMS MathViewer
- by Ieke Moerdijk
- Trans. Amer. Math. Soc. 310 (1988), 629-668
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973173-9
- PDF | Request permission
Abstract:
We investigate some properties of the functor $B$ which associates to any continuous groupoid $G$ its classifying topos $BG$ of equivariant $G$-sheaves. In particular, it will be shown that the category of toposes can be obtained as a localization of a category of continuous groupoids.References
- Michael Barr and Radu Diaconescu, Atomic toposes, J. Pure Appl. Algebra 17 (1980), no. 1, 1–24. MR 560782, DOI 10.1016/0022-4049(80)90020-1
- Michael Barr and Robert Paré, Molecular toposes, J. Pure Appl. Algebra 17 (1980), no. 2, 127–152. MR 567064, DOI 10.1016/0022-4049(80)90080-8
- B. J. Day and G. M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc. Cambridge Philos. Soc. 67 (1970), 553–558. MR 254817, DOI 10.1017/s0305004100045850
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- Théorie des topos et cohomologie étale des schémas. Tome 2, Lecture Notes in Mathematics, Vol. 270, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354653
- P. T. Johnstone, Topos theory, London Mathematical Society Monographs, Vol. 10, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1977. MR 0470019
- Peter T. Johnstone, Open maps of toposes, Manuscripta Math. 31 (1980), no. 1-3, 217–247. MR 576498, DOI 10.1007/BF01303275
- P. T. Johnstone, Factorization theorems for geometric morphisms. I, Cahiers Topologie Géom. Différentielle 22 (1981), no. 1, 3–17. Third Colloquium on Categories (Amiens, 1980), Part II. MR 609154
- André Joyal and Myles Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71. MR 756176, DOI 10.1090/memo/0309
- Gregory Maxwell Kelly, Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series, vol. 64, Cambridge University Press, Cambridge-New York, 1982. MR 651714 Makkai and R. Paré, Accessible categories (to appear).
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- Ieke Moerdijk, An elementary proof of the descent theorem for Grothendieck toposes, J. Pure Appl. Algebra 37 (1985), no. 2, 185–191. MR 796408, DOI 10.1016/0022-4049(85)90096-9
- Ieke Moerdijk, Continuous fibrations and inverse limits of toposes, Compositio Math. 58 (1986), no. 1, 45–72. MR 834047 —, Prodiscrete groups (to appear).
- I. Moerdijk and G. C. Wraith, Connected locally connected toposes are path-connected, Trans. Amer. Math. Soc. 295 (1986), no. 2, 849–859. MR 833712, DOI 10.1090/S0002-9947-1986-0833712-3
- Ross Street, Fibrations in bicategories, Cahiers Topologie Géom. Différentielle 21 (1980), no. 2, 111–160. MR 574662
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 629-668
- MSC: Primary 18B25; Secondary 03G30, 18F20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973173-9
- MathSciNet review: 973173