Decidability and invariant classes for degree structures
HTML articles powered by AMS MathViewer
- by Manuel Lerman and Richard A. Shore
- Trans. Amer. Math. Soc. 310 (1988), 669-692
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973174-0
- PDF | Request permission
Abstract:
We present a decision procedure for the $\forall \exists$-theory of $\mathcal {D}[{\mathbf {0}}, {\mathbf {0}}’ ]$, the Turing degrees below ${\mathbf {0}}’$. The two main ingredients are a new extension of embeddings result and a strengthening of the initial segments results below ${\mathbf {0}}’$ of [Le1]. First, given any finite subuppersemilattice $U$ of $\mathcal {D}[{\mathbf {0}}, {\mathbf {0}}’ ]$ with top element ${\mathbf {0}}’$ and an isomorphism type $V$ of a poset extending $U$ consistently with its structure as an usl such that $V$ and $U$ have the same top element and $V$ is an end extension of $U - \{ {\mathbf {0}}’ \}$, we construct an extension of $U$ inside $\mathcal {D}[{\mathbf {0}}, {\mathbf {0}}’ ]$ isomorphic to $V$. Second, we obtain an initial segment $W$ of $\mathcal {D}[{\mathbf {0}}, {\mathbf {0}}’ ]$ which is isomorphic to $U - \{ {\mathbf {0}}’ \}$ such that $W \cup \{ {\mathbf {0}}’ \}$ is a subusl of $\mathcal {D}$. The decision procedure follows easily from these results. As a corollary to the $\forall \exists$-decision procedure for $\mathcal {D}$, we show that no degree ${\mathbf {a}} > {\mathbf {0}}$ is definable by any $\exists \forall$-formula of degree theory. As a start on restricting the formulas which could possibly define the various jump classes we classify the generalized jump classes which are invariant for any $\forall$ or $\exists$-formula. The analysis again uses the decision procedure for the $\forall \exists$-theory of $\mathcal {D}$. A similar analysis is carried out for the high/low hierarchy using the decision procedure for the $\forall \exists$-theory of $\mathcal {D}[{\mathbf {0}}, {\mathbf {0}}’ ]$. (A jump class $\mathcal {C}$ is $\sigma$-invariant if $\sigma ({\mathbf {a}})$ holds for every ${\mathbf {a}}$ in $\mathcal {C}$.)References
- Richard L. Epstein, Initial segments of degrees below ${\bf 0}^{\prime }$, Mem. Amer. Math. Soc. 30 (1981), no. 241, vi+102. MR 603392, DOI 10.1090/memo/0241
- Carl G. Jockusch Jr., Degrees of generic sets, Recursion theory: its generalisation and applications (Proc. Logic Colloq., Univ. Leeds, Leeds, 1979) London Math. Soc. Lecture Note Ser., vol. 45, Cambridge Univ. Press, Cambridge-New York, 1980, pp. 110–139. MR 598304
- Carl G. Jockusch Jr., Simple proofs of some theorems on high degrees of unsolvability, Canadian J. Math. 29 (1977), no. 5, 1072–1080. MR 476460, DOI 10.4153/CJM-1977-105-5
- Carl G. Jockusch Jr. and David B. Posner, Double jumps of minimal degrees, J. Symbolic Logic 43 (1978), no. 4, 715–724. MR 518677, DOI 10.2307/2273510
- S. C. Kleene and Emil L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379–407. MR 61078, DOI 10.2307/1969708
- A. H. Lachlan, Distributive initial segments of the degrees of unsolvability, Z. Math. Logik Grundlagen Math. 14 (1968), 457–472. MR 237331, DOI 10.1002/malq.19680143002
- Manuel Lerman, Degrees of unsolvability, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1983. Local and global theory. MR 708718, DOI 10.1007/978-3-662-21755-9
- Manuel Lerman, On the ordering of classes in high/low hierarchies, Recursion theory week (Oberwolfach, 1984) Lecture Notes in Math., vol. 1141, Springer, Berlin, 1985, pp. 260–270. MR 820785, DOI 10.1007/BFb0076225
- Manuel Lerman, Initial segments of the degrees of unsolvability, Ann. of Math. (2) 93 (1971), 365–389. MR 307893, DOI 10.2307/1970779
- Manuel Lerman, Degrees which do not bound minimal degrees, Ann. Pure Appl. Logic 30 (1986), no. 3, 249–276. MR 836427, DOI 10.1016/0168-0072(86)90022-9
- David B. Posner and Robert W. Robinson, Degrees joining to ${\bf 0}^{\prime }$, J. Symbolic Logic 46 (1981), no. 4, 714–722. MR 641485, DOI 10.2307/2273221
- Robert W. Robinson, Jump restricted interpolation in the recursively enumerable degrees, Ann. of Math. (2) 93 (1971), 586–596. MR 313037, DOI 10.2307/1970889
- Leonard P. Sasso Jr., A minimal degree not realizing least possible jump, J. Symbolic Logic 39 (1974), 571–574. MR 360242, DOI 10.2307/2272899
- Richard A. Shore, On the $\forall \exists$-sentences of $\alpha$-recursion theory, Generalized recursion theory, II (Proc. Second Sympos., Univ. Oslo, Oslo, 1977) Studies in Logic and the Foundations of Mathematics, vol. 94, North-Holland, Amsterdam-New York, 1978, pp. 331–353. MR 516943
- Richard A. Shore, The theory of the degrees below ${\bf 0}^{\prime }$, J. London Math. Soc. (2) 24 (1981), no. 1, 1–14. MR 623666, DOI 10.1112/jlms/s2-24.1.1
- Richard A. Shore, Defining jump classes in the degrees below ${\bf 0}’$, Proc. Amer. Math. Soc. 104 (1988), no. 1, 287–292. MR 958085, DOI 10.1090/S0002-9939-1988-0958085-4 T. Slaman, An r.e. degree which is not the top of a diamond, in preparation.
- Robert I. Soare, Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated sets. MR 882921, DOI 10.1007/978-3-662-02460-7
- C. E. M. Yates, Initial segments of the degrees of unsolvability. II. Minimal degrees, J. Symbolic Logic 35 (1970), 243–266. MR 274288, DOI 10.2307/2270517
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 669-692
- MSC: Primary 03D25; Secondary 03B25, 03D30, 03D55
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973174-0
- MathSciNet review: 973174