On James’ type spaces
HTML articles powered by AMS MathViewer
- by Abderrazzak Sersouri
- Trans. Amer. Math. Soc. 310 (1988), 715-745
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973175-2
- PDF | Request permission
Abstract:
We study the spaces $E$ which are isometric to their biduals ${E^{{\ast }{\ast }}}$, and satisfy $\dim ({E^{{\ast }{\ast }}}/E) < \infty$. We show that these spaces have several common points with the usual James’ space. Our study leads to a kind of classification of these spaces and we show that there are essentially four different basic structures for such spaces in the complex case, and five in the real case.References
- Steven F. Bellenot, Transfinite duals of quasireflexive Banach spaces, Trans. Amer. Math. Soc. 273 (1982), no. 2, 551–577. MR 667160, DOI 10.1090/S0002-9947-1982-0667160-2
- Gilles Godefroy, Espaces de Banach: existence et unicité de certains préduaux, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, x, 87–105 (French, with English summary). MR 511815
- B. Grünbaum, On some covering and intersection properties in Minkowski spaces, Pacific J. Math. 9 (1959), 487–494. MR 105653, DOI 10.2140/pjm.1959.9.487
- Robert C. James, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174–177. MR 44024, DOI 10.1073/pnas.37.3.174
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056, DOI 10.1007/978-3-642-66557-8 A. Sersouri, Structure theorems for some quasi-reflexive Banach spaces, Doctorat de l’Université Paris VI, (November 86).
- M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), no. 1, 11–13. MR 430755, DOI 10.4064/sm-60-1-11-13
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 715-745
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973175-2
- MathSciNet review: 973175