The continuation theory for Morse decompositions and connection matrices
HTML articles powered by AMS MathViewer
- by Robert D. Franzosa
- Trans. Amer. Math. Soc. 310 (1988), 781-803
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973177-6
- PDF | Request permission
Abstract:
The continuation theory for ($<$-ordered) Morse decompositions and the indices defined on them—the homology index braid and the connection matrices—is established. The equivalence between $<$-ordered Morse decompositions and $<$-consistent attractor filtrations is displayed. The spaces of ($<$-ordered) Morse decompositions for a product parametrization of a local flow are introduced, and the local continuation of ($<$-ordered) Morse decompositions is obtained via the above-described equivalence and the local continuation of attractors. The homology index braid and the connection matrices of an admissible ordering of a Morse decomposition are shown to be invariant on path components of the corresponding space of $<$-ordered Morse decompositions. This invariance is used to prove that the collection of connection matrices of a Morse decomposition is upper semicontinuous over the space of Morse decompositions (and over the parameter space) under local continuation.References
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- Charles Conley and Eduard Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. MR 733717, DOI 10.1002/cpa.3160370204 R. Franzosa, Index filtrations and connection matrices for partially ordered Morse decompositions, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1984.
- Robert Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 193–213. MR 857439, DOI 10.1090/S0002-9947-1986-0857439-7
- Robert D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592. MR 978368, DOI 10.1090/S0002-9947-1989-0978368-7
- Robert D. Franzosa and Konstantin Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), no. 2, 270–287. MR 927003, DOI 10.1016/0022-0396(88)90028-9 —, Connections in parameterized families of flows via similarity transformations on connection matrices (in preparation).
- Henry L. Kurland, The Morse index of an isolated invariant set is a connected simple system, J. Differential Equations 42 (1981), no. 2, 234–259. MR 641650, DOI 10.1016/0022-0396(81)90028-0 —, Homotopy invariants of repeller-attractor pairs. I. The Püppe sequence of an $r$-$a$ pair, J. Differential Equations 46 (1982). —, Homotopy invariants of repeller-attractor pairs. II. Continuation of $r$-$a$ pairs, J. Differential Equations 49 (1983). C. McCord, Mappings and homological properties in the Conley index theory, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1986. K. Mischaikow, Classification of traveling wave solutions of reaction-diffusion systems, Brown Univ., LCDS #86-5, 1985. —, Homoclinic orbits in Hamiltonian systems and heteroclinic orbits in gradient and gradient-like systems, Brown. Univ., LCDS #86-33, 1986. —, Existence of generalized homoclinic orbits for one parameter families of flows, Brown Univ., LCDS #86-42, 1986. J. Reineck, The connection matrix and the classification of flows arising from ecological models, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1985. —, Connecting orbits in one parameter families of flows, preprint. —, Travelling wave solutions to a gradient system, preprint.
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 781-803
- MSC: Primary 58F25; Secondary 34C35, 58F12, 58F14
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973177-6
- MathSciNet review: 973177