Generalizations of Cauchy’s summation theorem for Schur functions
HTML articles powered by AMS MathViewer
- by G. E. Andrews, I. P. Goulden and D. M. Jackson
- Trans. Amer. Math. Soc. 310 (1988), 805-820
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973178-8
- PDF | Request permission
Abstract:
Cauchy’s summation theorem for Schur functions is generalized, and a number of related results are given. The result is applied to a combinatorial problem involving products of pairs of permuations, by appeal to properties of the group algebra of the symmetric group.References
- Eiichi Bannai and Tatsuro Ito, Algebraic combinatorics. I, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. Association schemes. MR 882540 P. Diaconis, Group theory in statistics [interim title for a book].
- Ira M. Gessel, Counting three-line Latin rectangles, Combinatoire énumérative (Montreal, Que., 1985/Quebec, Que., 1985) Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 106–111. MR 927761, DOI 10.1007/BFb0072512
- I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Inc., New York, 1983. With a foreword by Gian-Carlo Rota. MR 702512
- D. M. Jackson, Counting cycles in permutations by group characters, with an application to a topological problem, Trans. Amer. Math. Soc. 299 (1987), no. 2, 785–801. MR 869231, DOI 10.1090/S0002-9947-1987-0869231-9
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- Gian-Carlo Rota, The number of partitions of a set, Amer. Math. Monthly 71 (1964), 498–504. MR 161805, DOI 10.2307/2312585 B. E. Sagan (private communication).
- C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179–191. MR 121305, DOI 10.4153/CJM-1961-015-3 C. W. Borchardt, Bestimmung der symmetrischen Verbindungen Vermittelst ihrer erzeugenden Funktion, Montash. Akad. Wiss. Berlin, 1855, pp. 165-171.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 310 (1988), 805-820
- MSC: Primary 05A19; Secondary 05B15
- DOI: https://doi.org/10.1090/S0002-9947-1988-0973178-8
- MathSciNet review: 973178