Determination of all imaginary cyclic quartic fields with class number $2$
HTML articles powered by AMS MathViewer
- by Kenneth Hardy, Richard H. Hudson, David Richman and Kenneth S. Williams PDF
- Trans. Amer. Math. Soc. 311 (1989), 1-55 Request permission
Abstract:
It is proved that there are exactly $8$ imaginary cyclic quartic fields with class number $2$.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Emil Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston, New York-Toronto-London, 1964. Translated by Michael Butler. MR 0165148
- Ethan D. Bolker, Elementary number theory. An algebraic approach, W. A. Benjamin, Inc., New York, 1970. MR 0252310
- Ezra Brown and Charles J. Parry, The $2$-class group of certain biquadratic number fields, J. Reine Angew. Math. 295 (1977), 61–71. MR 457398
- Ezra Brown and Charles J. Parry, The $2$-class group of biquadratic fields. II, Pacific J. Math. 78 (1978), no. 1, 11–26. MR 513279 T. H. Gronwall, Sur les séries de Dirichlet correspondant à des caractères complexes, Rend. Circ. Mat. Palermo 35 (1913), 145-159.
- Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams, and N. M. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, Math. Comp. 49 (1987), no. 180, 615–620. MR 906194, DOI 10.1090/S0025-5718-1987-0906194-5 K. Hardy, R. H. Hudson, D. Richman and K. S. Williams, Table of the relative class numbers ${h^ * }(K)$ of imaginary cyclic quartic fields $K$ with ${h^*}(K) \equiv 2\quad ({\operatorname {mod}}4)$ and conductor $f < 416,000$, Carleton-Ottawa Math. Lecture Note Series, No. 8, March 1987, 282 pp. E. Landau, Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen, Gàtt. Nachr., 1918, pp. 79-97.
- Edmund Landau, Über die Wurzeln der Zetafunktion, Math. Z. 20 (1924), no. 1, 98–104 (German). MR 1544664, DOI 10.1007/BF01188073 —, Über Dirichletsche Reihen mit komplexer Charakteren, J. Reine Angew. Math. 157 (1926), 26-32. T. Metsänkylä, Zero-free regions of Dirichlet’s $L$-functions near the point $1$, Ann. Univ. Turku 139 (1970), 3-11. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Gàtt. Nachr., 1918, pp. 21-29.
- Bennett Setzer, The determination of all imaginary, quartic, abelian number fields with class number $1$, Math. Comp. 35 (1980), no. 152, 1383–1386. MR 583516, DOI 10.1090/S0025-5718-1980-0583516-2
- Tikao Tatuzawa, On a theorem of Siegel, Jpn. J. Math. 21 (1951), 163–178 (1952). MR 51262, DOI 10.4099/jjm1924.21.0_{1}63
- Kôji Uchida, Class numbers of imaginary abelian number fields. II, Tohoku Math. J. (2) 23 (1971), 335–348. MR 288096, DOI 10.2748/tmj/1178242649
- Kôji Uchida, Imaginary abelian number fields with class number one, Tohoku Math. J. (2) 24 (1972), 487–499. MR 321904, DOI 10.2748/tmj/1178241490 E. T. Copson, An introduction to the theory of functions of a complex variable, Oxford Univ. Press, 1960.
- Kenneth S. Williams, Kenneth Hardy, and Christian Friesen, On the evaluation of the Legendre symbol $((A+B\sqrt m)/p)$, Acta Arith. 45 (1985), no. 3, 255–272. MR 808025, DOI 10.4064/aa-45-3-255-272
- Mohamed Zitouni, Quelques propriétés des corps cycliques de degré $4$, Séminaire Delange-Pisot-Poitou (14e année: 1972/73), Théorie des nombres, Fasc. 1, Exp. No. 4, Secrétariat Mathématique, Paris, 1973, pp. 8 (French). MR 0404198
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 1-55
- MSC: Primary 11R16; Secondary 11R29
- DOI: https://doi.org/10.1090/S0002-9947-1989-0929663-9
- MathSciNet review: 929663