Peripherally specified homomorphs of knot groups
HTML articles powered by AMS MathViewer
- by Dennis Johnson and Charles Livingston
- Trans. Amer. Math. Soc. 311 (1989), 135-146
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942427-5
- PDF | Request permission
Abstract:
Let $G$ be a group and let $\mu$ and $\lambda$ be elements of $G$. Necessary and sufficient conditions are presented for the solution of the following problem: Is there a knot $K$ in ${S^3}$ and a representation $\rho :{\pi _1}({S^3} - K) \to G$ such that $\rho (m) = \mu$ and $\rho (l) = \lambda$, where $m$ and $l$ are the meridian and longitude of $K$?References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- Allan L. Edmonds and Charles Livingston, Symmetric representations of knot groups, Topology Appl. 18 (1984), no. 2-3, 281–312. MR 769296, DOI 10.1016/0166-8641(84)90015-4
- F. González-Acuña, Homomorphs of knot groups, Ann. of Math. (2) 102 (1975), no. 2, 373–377. MR 379671, DOI 10.2307/1971036
- Dennis Johnson, Homomorphs of knot groups, Proc. Amer. Math. Soc. 78 (1980), no. 1, 135–138. MR 548101, DOI 10.1090/S0002-9939-1980-0548101-9 —, Peripherally specified homomorphs of knot groups, preprint.
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- P. Kutzko, On groups of finite weight, Proc. Amer. Math. Soc. 55 (1976), no. 2, 279–280. MR 399272, DOI 10.1090/S0002-9939-1976-0399272-8
- W. B. R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. (2) 76 (1962), 531–540. MR 151948, DOI 10.2307/1970373
- L. P. Neuwirth, Knot groups, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. MR 0176462
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Andrew H. Wallace, Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503–528. MR 125588, DOI 10.4153/CJM-1960-045-7
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 135-146
- MSC: Primary 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0942427-5
- MathSciNet review: 942427