Realizing rotation vectors for torus homeomorphisms
Author:
John Franks
Journal:
Trans. Amer. Math. Soc. 311 (1989), 107-115
MSC:
Primary 58F22
DOI:
https://doi.org/10.1090/S0002-9947-1989-0958891-1
MathSciNet review:
958891
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the rotation set $\rho (F)$ for a lift $F$ of a homeomorphism $f:{T^2} \to {T^2}$, which is homotopic to the identity. Our main result is that if a vector $v$ lies in the interior of $\rho (F)$ and has both coordinates rational, then there is a periodic point $x \in {T^2}$ with the property that \[ \frac {{{F^q}({x_0}) - {x_0}}}{q} = v\] where ${x_0} \in {R^2}$ is any lift of $x$ and $q$ is the least period of $x$.
- Robert F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co., Glenview, Ill.-London, 1971. MR 0283793
- Morton Brown, A new proof of Brouwer’s lemma on translation arcs, Houston J. Math. 10 (1984), no. 1, 35–41. MR 736573
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- Albert Fathi, An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math. (2) 33 (1987), no. 3-4, 315–322. MR 925994
- John Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 99–107. MR 967632, DOI https://doi.org/10.1017/S0143385700009366
- John Franks, A variation on the Poincaré-Birkhoff theorem, Hamiltonian dynamical systems (Boulder, CO, 1987) Contemp. Math., vol. 81, Amer. Math. Soc., Providence, RI, 1988, pp. 111–117. MR 986260, DOI https://doi.org/10.1090/conm/081/986260
- Hugo Hadwiger and Hans Debrunner, Combinatorial geometry in the plane, Holt, Rinehart and Winston, New York, 1964. Translated by Victor Klee. With a new chapter and other additional material supplied by the translator. MR 0164279 R. MacKay and J. Llibre, Rotation vectors and entropy for homeomorphisms homotopic to the identity, preprint. M. Misiurewicz and K. Ziemian, Rotation sets of toral maps (to appear).
- John C. Oxtoby, Diameters of arcs and the gerrymandering problem, Amer. Math. Monthly 84 (1977), no. 3, 155–162. MR 433333, DOI https://doi.org/10.2307/2319484
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F22
Retrieve articles in all journals with MSC: 58F22
Additional Information
Article copyright:
© Copyright 1989
American Mathematical Society