Torsion points on abelian étale coverings of $\textbf {P}^ 1-\{0,1,\infty \}$
HTML articles powered by AMS MathViewer
- by Robert F. Coleman
- Trans. Amer. Math. Soc. 311 (1989), 185-208
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974774-5
- PDF | Request permission
Abstract:
Let $X \to {{\mathbf {P}}^1}$ be an Abelian covering of degree $m$ over ${\mathbf {Q}}({\mu _m})$ unbranched outside $0$, $1$ and $\infty$. If the genus of $X$ is greater than $1$ embed $X$ in its Jacobian $J$ in such a way that one of the points above $0$, $1$ or $\infty$ is mapped to the origin. We study the set of torsion points of $J$ which lie on $X$. In particular, we prove that this set is defined over an extension of ${\mathbf {Q}}$ unramified outside $6m$. We also obtain information about the orders of these torsion points.References
- Noboru Aoki, Simple factors of the Jacobian of a Fermat curve and the Picard number of a product of Fermat curves, Amer. J. Math. 113 (1991), no. 5, 779–833. MR 1129293, DOI 10.2307/2374786
- Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. MR 782557, DOI 10.2307/1971194
- Robert F. Coleman, Torsion points on Fermat curves, Compositio Math. 58 (1986), no. 2, 191–208. MR 844409
- Robert F. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), no. 2, 615–640. MR 899407, DOI 10.1215/S0012-7094-87-05425-1
- Robert Coleman and William McCallum, Stable reduction of Fermat curves and Jacobi sum Hecke characters, J. Reine Angew. Math. 385 (1988), 41–101. MR 931215
- D. K. Faddeev, The group of divisor classes on some algebraic curves, Soviet Math. Dokl. 2 (1961), 67–69. MR 0130869
- Ralph Greenberg, On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1980/81), no. 3, 345–359. MR 607375
- Benedict H. Gross and David E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math. 44 (1978), no. 3, 201–224. MR 491708, DOI 10.1007/BF01403161
- A. Hurwitz, Über die diophantische Cleichung $x^3y+y^3z+z^3x=0$, Math. Ann. 65 (1908), no. 3, 428–430 (German). MR 1511476, DOI 10.1007/BF01456422 F. Klein, Über die transformation siebenter ordhang der elliptishen funktionen, LXXXIV Gessammette Mathematische Abhandlungen III, Springer, Berlin, 1923.
- Neal Koblitz and David Rohrlich, Simple factors in the Jacobian of a Fermat curve, Canadian J. Math. 30 (1978), no. 6, 1183–1205. MR 511556, DOI 10.4153/CJM-1978-099-6
- M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), no. 1, 207–233 (French). MR 688265, DOI 10.1007/BF01393342
- David E. Rohrlich, Points at infinity on the Fermat curves, Invent. Math. 39 (1977), no. 2, 95–127. MR 441978, DOI 10.1007/BF01390104
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 185-208
- MSC: Primary 11G30; Secondary 14H30, 14H40
- DOI: https://doi.org/10.1090/S0002-9947-1989-0974774-5
- MathSciNet review: 974774